Pascal Meier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8502845/publications.pdf Version: 2024-02-01

DASCAL MELED

#	Article	IF	CITATIONS
1	Drice restrains Diap2-mediated inflammatory signalling and intestinal inflammation. Cell Death and Differentiation, 2022, 29, 28-39.	5.0	7
2	Primidone blocks RIPK1-driven cell death and inflammation. Cell Death and Differentiation, 2021, 28, 1610-1626.	5.0	46
3	Ubiquitylation of MLKL at lysine 219 positively regulates necroptosis-induced tissue injury and pathogen clearance. Nature Communications, 2021, 12, 3364.	5.8	43
4	RIPK1â€mediated immunogenic cell death promotes antiâ€ŧumour immunity against softâ€ŧissue sarcoma. EMBO Molecular Medicine, 2020, 12, e10979.	3.3	22
5	The NMDA receptor regulates competition of epithelial cells in the Drosophila wing. Nature Communications, 2020, 11, 2228.	5.8	18
6	The Diversification of Cell Death and Immunity: Memento Mori. Molecular Cell, 2019, 76, 232-242.	4.5	106
7	RIPK1 and Caspase-8 Ensure Chromosome Stability Independently of Their Role in Cell Death and Inflammation. Molecular Cell, 2019, 73, 413-428.e7.	4.5	50
8	The anticonvulsive Phenhydan® suppresses extrinsic cell death. Cell Death and Differentiation, 2019, 26, 1631-1645.	5.0	28
9	Mind Bomb Regulates Cell Death during TNF Signaling by Suppressing RIPK1's Cytotoxic Potential. Cell Reports, 2018, 23, 470-484.	2.9	42
10	Ubiquitin-Mediated Regulation of RIPK1 Kinase Activity Independent of IKK and MK2. Molecular Cell, 2018, 69, 566-580.e5.	4.5	102
11	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
12	Identification and Characterization of Novel Receptor-Interacting Serine/Threonineâ€Protein Kinase 2 Inhibitors Using Structural Similarity Analysis. Journal of Pharmacology and Experimental Therapeutics, 2018, 365, 354-367.	1.3	22
13	Checkpoints in TNF-Induced Cell Death: Implications in Inflammation and Cancer. Trends in Molecular Medicine, 2018, 24, 49-65.	3.5	201
14	SUMO-mediated regulation of NLRP3 modulates inflammasome activity. Nature Communications, 2018, 9, 3001.	5.8	134
15	Ripk1 and haematopoiesis: a case for LUBAC and Ripk3. Cell Death and Differentiation, 2018, 25, 1361-1363.	5.0	4
16	MK2 Phosphorylates RIPK1 to Prevent TNF-Induced Cell Death. Molecular Cell, 2017, 66, 698-710.e5.	4.5	242
17	Caspase-10 Negatively Regulates Caspase-8-Mediated Cell Death, Switching the Response to CD95L in Favor of NF-κB Activation and Cell Survival. Cell Reports, 2017, 19, 785-797.	2.9	84
18	An inhibitory mono-ubiquitylation of the Drosophila initiator caspase Dronc functions in both apoptotic and non-apoptotic pathways. PLoS Genetics, 2017, 13, e1006438.	1.5	29

PASCAL MEIER

#	Article	IF	CITATIONS
19	Techniques to Distinguish Apoptosis from Necroptosis. Cold Spring Harbor Protocols, 2016, 2016, pdb.top070375.	0.2	14
20	Time-Lapse Imaging of Cell Death. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot087395.	0.2	13
21	The regulatory isoform rPCRP-LC induces immune resolution via endosomal degradation of receptors. Nature Immunology, 2016, 17, 1150-1158.	7.0	45
22	Signal Integration by the IκB Protein Pickle Shapes Drosophila Innate Host Defense. Cell Host and Microbe, 2016, 20, 283-295.	5.1	33
23	PIM1 kinase regulates cell death, tumor growth and chemotherapy response in triple-negative breast cancer. Nature Medicine, 2016, 22, 1303-1313.	15.2	188
24	The unconventional myosin CRINKLED and its mammalian orthologue MYO7A regulate caspases in their signalling roles. Nature Communications, 2016, 7, 10972.	5.8	28
25	Tissue Repair: How to Inflame Your Neighbours. Current Biology, 2016, 26, R192-R194.	1.8	8
26	Ubiquitin-Mediated Regulation of Cell Death, Inflammation, and Defense of Homeostasis. Current Topics in Developmental Biology, 2015, 114, 209-239.	1.0	14
27	Inhibitor of Apoptosis (IAP) Proteins-Modulators of Cell Death and Inflammation. Cold Spring Harbor Perspectives in Biology, 2013, 5, a008730-a008730.	2.3	246
28	Time-Lapse Imaging of Necrosis. Methods in Molecular Biology, 2013, 1004, 17-29.	0.4	3
29	Ubiquitin-mediated regulation of RhoGTPase signalling: IAPs and HACE1 enter the fray. EMBO Journal, 2012, 31, 1-2.	3.5	7
30	Ubiquitylation of the initiator caspase DREDD is required for innate immune signalling. EMBO Journal, 2012, 31, 2770-2783.	3.5	80
31	CARD-Mediated Autoinhibition of cIAP1's E3 Ligase Activity Suppresses Cell Proliferation and Migration. Molecular Cell, 2011, 42, 569-583.	4.5	89
32	The Ripoptosome, a Signaling Platform that Assembles in Response to Genotoxic Stress and Loss of IAPs. Molecular Cell, 2011, 43, 432-448.	4.5	714
33	Drosophila IAP1-Mediated Ubiquitylation Controls Activation of the Initiator Caspase DRONC Independent of Protein Degradation. PLoS Genetics, 2011, 7, e1002261.	1.5	48
34	To fight or die — inhibitor of apoptosis proteins at the crossroad of innate immunity and death. Current Opinion in Cell Biology, 2010, 22, 872-881.	2.6	65
35	IAPs: from caspase inhibitors to modulators of NF-κB, inflammation and cancer. Nature Reviews Cancer, 2010, 10, 561-574.	12.8	721
36	Caspase-Mediated Cleavage, IAP Binding, and Ubiquitination: Linking Three Mechanisms Crucial for Drosophila NF-κB Signaling. Molecular Cell, 2010, 37, 172-182.	4.5	149

PASCAL MEIER

#	Article	IF	CITATIONS
37	Systematic InÂVivo RNAi Analysis Identifies IAPs as NEDD8-E3 Ligases. Molecular Cell, 2010, 40, 810-822.	4.5	82
38	Two roles for the <i>Drosophila</i> IKK complex in the activation of Relish and the induction of antimicrobial peptide genes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9779-9784.	3.3	136
39	Ubiquitin-mediated regulation of apoptosis. Trends in Cell Biology, 2009, 19, 130-140.	3.6	87
40	Inhibitor of apoptosis proteins in Drosophila: gatekeepers of death. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 950-960.	2.2	101
41	A Tangled Web of Ubiquitin Chains: Breaking News in TNF-R1 Signaling. Molecular Cell, 2009, 36, 736-742.	4.5	78
42	IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-κB as well as cell survival and oncogenesis. Nature Cell Biology, 2008, 10, 1309-1317.	4.6	228
43	Inactivation of Effector Caspases through Nondegradative Polyubiquitylation. Molecular Cell, 2008, 32, 540-553.	4.5	111
44	PIMS Modulates Immune Tolerance by Negatively Regulating Drosophila Innate Immune Signaling. Cell Host and Microbe, 2008, 4, 147-158.	5.1	224
45	A fluorescent reporter of caspase activity for live imaging. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13901-13905.	3.3	154
46	DIAP2 functions as a mechanism-based regulator of drICE that contributes to the caspase activity threshold in living cells. Journal of Cell Biology, 2007, 179, 1467-1480.	2.3	40
47	Lucifer's Labyrinth—Ten Years of Path Finding in Cell Death. Molecular Cell, 2007, 28, 746-754.	4.5	98
48	The Drosophila Inhibitor of Apoptosis Protein DIAP2 Functions in Innate Immunity and Is Essential To Resist Gram-Negative Bacterial Infection. Molecular and Cellular Biology, 2006, 26, 7821-7831.	1.1	121
49	IAPs are functionally non-equivalent and regulate effector caspases through distinct mechanisms. Nature Cell Biology, 2005, 7, 70-77.	4.6	132
50	Degradation of DIAP1 by the N-end rule pathway is essential for regulating apoptosis. Nature Cell Biology, 2003, 5, 467-473.	4.6	210
51	IAP-antagonists exhibit non-redundant modes of action through differential DIAP1 binding. EMBO Journal, 2003, 22, 6642-6652.	3.5	84
52	IAP degradation: decisive blow or altruistic sacrifice?. Trends in Cell Biology, 2002, 12, 449-452.	3.6	24
53	The DIAP1 RING finger mediates ubiquitination of Dronc and is indispensable for regulating apoptosis. Nature Cell Biology, 2002, 4, 445-450.	4.6	274
54	Jafrac2 is an IAP antagonist that promotes cell death by liberating Dronc from DIAP1. EMBO Journal, 2002, 21, 5118-5129.	3.5	85

		Pascal Meier		
#	Article		IF	CITATIONS
55	Apoptosis in development. Nature, 2000, 407, 796-801.		13.7	881
56	The Drosophila caspase DRONC is regulated by DIAP1. EMBO Journal, 2000, 19, 598-6	511.	3.5	304
57	Dying like Flies. Cell, 1998, 95, 295-298.		13.5	51