

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/850280/publications.pdf Version: 2024-02-01

\\\/\+1++

#	Article	IF	CITATIONS
1	Temperature dependent carrier transport in few-layered MoS ₂ : from hopping to band transport. Journal Physics D: Applied Physics, 2022, 55, 195109.	1.3	3
2	Small signal analysis of ultra-wide bandgap Al0.7Ga0.3N channel MESFETs. Microelectronic Engineering, 2021, 237, 111495.	1.1	2
3	Electron transport of perovskite oxide BaSnO3 on (110) DyScO3 substrate with channel-recess for ferroelectric field effect transistors. Applied Physics Letters, 2021, 118, .	1.5	7
4	Highâ€Currentâ€Density Enhancementâ€Mode Ultrawideâ€Bandgap AlGaN Channel Metal–Insulator–Semiconductor Heterojunction Fieldâ€Effect Transistors with a Threshold Voltage of 5 V. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000576.	1.2	5
5	Breakdown Voltage Enhancement in ScAlN/GaN High-Electron-Mobility Transistors by High- <i>k</i> Bismuth Zinc Niobate Oxide. IEEE Transactions on Electron Devices, 2021, 68, 3333-3338.	1.6	14
6	Temperature-Dependent Low-Frequency Noise Analysis of ZnO Nanowire Field-Effect Transistors. IEEE Transactions on Electron Devices, 2021, 68, 3532-3536.	1.6	5
7	Design and development of 1.5ÂkV vertical GaN pn diodes on HVPE substrate. Journal of Materials Research, 2021, 36, 4919-4926.	1.2	7
8	Thermal Management of High-Power Switching Transistors Using Thick CVD-Grown Graphene Nanomaterial. IEEE Transactions on Power Electronics, 2020, 35, 578-590.	5.4	9
9	All MOCVD grown Al0.7Ga0.3N/Al0.5Ga0.5N HFET: An approach to make ohmic contacts to Al-rich AlGaN channel transistors. Solid-State Electronics, 2020, 164, 107696.	0.8	17
10	Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nature Biomedical Engineering, 2020, 4, 69-83.	11.6	415
11	Linearity Improvement With AlGaN Polarization- Graded Field Effect Transistors With Low Pressure Chemical Vapor Deposition Grown SiN _x Passivation. IEEE Electron Device Letters, 2020, 41, 19-22.	2.2	36
12	Nanoscale etching of perovskite oxides for field effect transistor applications. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, .	0.6	8
13	Low frequency electrochemical noise in AlGaN/GaN field effect transistor biosensors. Applied Physics Letters, 2020, 117, .	1.5	3
14	High-Current Perovskite Oxide BaTiO ₃ /BaSnO ₃ Heterostructure Field Effect Transistors. IEEE Electron Device Letters, 2020, 41, 621-624.	2.2	8
15	Al _{0.65} Ga _{0.35} N/Al _{0.4} Ga _{0.6} N Micro-Channel Heterojunction Field Effect Transistors With Current Density Over 900 mA/mm. IEEE Electron Device Letters, 2020, 41, 677-680.	2.2	19
16	Improved DC-RF dispersion with epitaxial passivation for high linearity graded AlGaN channel field effect transistors. Applied Physics Express, 2020, 13, 036502.	1.1	10
17	Dynamic Switching of SiC Power MOSFETs Based on Analytical Subcircuit Model. IEEE Transactions on Power Electronics, 2020, 35, 9680-9689.	5.4	18
18	BaTiO3/Al0.58Ga0.42N lateral heterojunction diodes with breakdown field exceeding 8 MV/cm. Applied Physics Letters, 2020, 116, .	1.5	17

Wu Lu

#	Article	IF	CITATIONS
19	\$eta\$ -Ga ₂ O ₃ Delta-Doped Field-Effect Transistors With Current Gain Cutoff Frequency of 27 GHz. IEEE Electron Device Letters, 2019, 40, 1052-1055.	2.2	119
20	Design of compositionally graded contact layers for MOCVD grown high Al-content AlGaN transistors. Applied Physics Letters, 2019, 115, .	1.5	17
21	Velocity saturation in La-doped BaSnO3 thin films. Applied Physics Letters, 2019, 115, .	1.5	9
22	Al _{0.75} Ga _{0.25} N/Al _{0.6} Ga _{0.4} N heterojunction field effect transistor with f _T of 40 GHz. Applied Physics Express, 2019, 12, 066502.	1.1	24
23	Dual Silicon Oxycarbide Accelerated Growth of Wellâ€Ordered Graphitic Networks for Electronic and Thermal Applications. Advanced Materials Technologies, 2019, 4, 1800324.	3.0	6
24	SiOCâ€Accelerated Graphene Grown on SiO ₂ /Si with Tunable Electronic Properties. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900017.	1.2	2
25	Plasmonic Metasurfaces with High UV–Vis Transmittance for Photopatterning of Designer Molecular Orientations. Advanced Optical Materials, 2019, 7, 1900117.	3.6	17
26	Polarization Engineering of AlGaN/GaN HEMT With Graded InGaN Sub-Channel for High-Linearity X-Band Applications. IEEE Electron Device Letters, 2019, 40, 522-525.	2.2	29
27	Silicon Oxycarbide Accelerated Chemical Vapor Deposition of Graphitic Networks on Ceramic Substrates for Thermal Management Enhancement. ACS Applied Nano Materials, 2019, 2, 452-458.	2.4	12
28	Thiolated-graphene-based supercapacitors with high energy density and stable cycling performance. Carbon, 2018, 134, 326-333.	5.4	38
29	High Al-Content AlGaN Transistor With 0.5 A/mm Current Density and Lateral Breakdown Field Exceeding 3.6 MV/cm. IEEE Electron Device Letters, 2018, 39, 256-259.	2.2	46
30	All MOCVD grown 250 nm gate length Al _{0.70} Ga _{0.30} N MESFETs. , 2018, , .		1
31	X-Band Power and Linearity Performance of Compositionally Graded AlGaN Channel Transistors. IEEE Electron Device Letters, 2018, 39, 1884-1887.	2.2	26
32	Ultra-wide band gap materials for high frequency applications. , 2018, , .		3
33	Rapidly annealed nanoporous graphene materials for electrochemical energy storage. Journal of Materials Chemistry A, 2017, 5, 23720-23726.	5.2	13
34	Graphene supercapacitor with both high power and energy density. Nanotechnology, 2017, 28, 445401.	1.3	137
35	Topical tissue nano-transfection mediates non-viral stroma reprogramming and rescue. Nature Nanotechnology, 2017, 12, 974-979.	15.6	122
36	Nanofabrication: Controllable Large-Scale Transfection of Primary Mammalian Cardiomyocytes on a Nanochannel Array Platform (Small 43/2016). Small, 2016, 12, 5914-5914.	5.2	1

Wu Lu

#	Article	IF	CITATIONS
37	Grapheneâ€Based Electrochemical Microsupercapacitors for Miniaturized Energy Storage Applications. Nanoscience and Technology, 2016, , 271-291.	1.5	3
38	Micro-/nanoscale electroporation. Lab on A Chip, 2016, 16, 4047-4062.	3.1	90
39	On-Chip Clonal Analysis of Glioma-Stem-Cell Motility and Therapy Resistance. Nano Letters, 2016, 16, 5326-5332.	4.5	44
40	3D nanochannel electroporation for high-throughput cell transfection with high uniformity and dosage control. Nanoscale, 2016, 8, 243-252.	2.8	88
41	Nanoporous graphene materials by low-temperature vacuum-assisted thermal process for electrochemical energy storage. Journal of Power Sources, 2015, 284, 146-153.	4.0	42
42	Analysis of surface states in ZnO nanowire field effect transistors. Applied Surface Science, 2014, 301, 2-8.	3.1	5
43	Temperature Dependence of Electron Transport in ZnO Nanowire Field Effect Transistors. IEEE Transactions on Electron Devices, 2014, 61, 625-630.	1.6	3
44	Atomic Carbide Bonding Leading to Superior Graphene Networks. Advanced Materials, 2013, 25, 4668-4672.	11.1	27
45	AlGaN/GaN heterostructure field transistor for label-free detection of DNA hybridization. Science Bulletin, 2013, 58, 2601-2605.	1.7	6
46	Polarization-Engineered Ga-Face GaN-Based Heterostructures for Normally-Off Heterostructure Field-Effect Transistors. Journal of Electronic Materials, 2013, 42, 10-14.	1.0	4
47	Large area single crystal (0001) oriented MoS2. Applied Physics Letters, 2013, 102, .	1.5	200
48	Toward single molecule detection in physiological buffer using planar FET biosensors. , 2013, , .		0
49	Hydrogenated IGZO Thin-Film Transistors Using High-Pressure Hydrogen Annealing. IEEE Transactions on Electron Devices, 2013, 60, 2537-2541.	1.6	60
50	ImmunoFET feasibility in physiological salt environments. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 2474-2488.	1.6	17
51	Surface Functionalization of Hydrogen-Terminated Si for Biosensing Applications. Journal of Electronic Materials, 2012, 41, 830-836.	1.0	3
52	High sensitivity AlGaN/GaN field effect transistor protein sensors operated in the subthreshold regime by a control gate electrode. Applied Physics Letters, 2011, 99, .	1.5	19
53	Improved Sensitivity of AlGaN/GaN Field Effect Transistor Biosensors by Optimized Surface Functionalization. IEEE Sensors Journal, 2011, 11, 1726-1735.	2.4	23
54	AlGaN/GaN FET for DNA hybridization detection. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 1623-1625.	0.8	12

Wu Lu

#	Article	IF	CITATIONS
55	Edge-field effects on gate capacitance, threshold voltage and low-field mobility in AlGaN/GaN HEMTs. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2448-2450.	0.8	Ο
56	AlGaN/GaN HFET biosensors working at subthreshold regime for sensitivity enhancement. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2489-2491.	0.8	7
57	Analysis of trapping effects in AlGaN/GaN HEMTs based on near zero bias output conductance. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2004-2006.	0.8	1
58	Hydrogen sensing performance dependence on catalytic metal thickness of Pt/AlGaN/GaN Schottky diodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1838-1840.	0.8	1
59	Operation of Pt/AlGaN/GaN-Heterojunction Field-Effect-Transistor Hydrogen Sensors With Low Detection Limit and High Sensitivity. IEEE Electron Device Letters, 2008, 29, 1193-1195.	2.2	30
60	Electrical Detection of Biological Conjugation by AlGaN/GaN Heterostructure Field Effect Transistors. , 2008, , .		0
61	Thermodynamic and Kinetic Analysis of Hydrogen Sensing in Pt/AlGaN/GaN Schottky Diodes at High Temperatures. IEEE Sensors Journal, 2008, 8, 903-909.	2.4	27
62	Extraction of effective trap density and gate length in AlGaN/GaN HEMTs based on pulsed I-V characteristics. , 2007, , .		0
63	AlGaN/GaN Heterostructure Field Effect Transistors for High Temperature Hydrogen Sensing with Enhanced Sensitivity. , 2007, , .		Ο
64	Compositional Study of Copper-Germanium Ohmic Contact to n-GaN. Journal of Electronic Materials, 2007, 36, 420-425.	1.0	4
65	Passivation of Surface and Interface States in AlGaN/GaN HEMT Structures by Annealing. Journal of Electronic Materials, 2007, 36, 1149-1155.	1.0	12
66	Temperature-dependent microwave noise performances of AlGaN/GaN HEMTs with post-gate annealing. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2659-2662.	0.8	3
67	FABRICATION OF SELF-ALIGNED T-GATE AlGaN/GaN HIGH ELECTRON MOBILITY TRANSISTORS. International Journal of High Speed Electronics and Systems, 2004, 14, 805-809.	0.3	0
68	Quasi-enhancement mode AlGaN/GaN HEMTs on sapphire substrate. Solid-State Electronics, 2003, 47, 2081-2084.	0.8	5
69	A combined model for Si-based resonant interband tunneling diodes grown on SOI. , 0, , .		Ο
70	Trap behavior in AlGaN/GaN HEMTs by post-gateannealing. , 0, , .		0
71	Fabrication of self-aligned T-gate AlGaN/GaN high electron mobility transistors. , 0, , .		0
72	Growth, fabrication and characterization of In/sub 0.52/Al/sub 0.48/As/In/sub 0.53/Ga/sub 0.47/As/InAs/sub 0.3/P/sub 0.7/ composite channel HEMTs. , 0, , .		0

#	Article	IF	CITATIONS
73	Characterization of Post-Gate Annealing Impact on Traps in AlGaN/GaN Schottky Diodes by Capacitance and Conductance Dispersion. , 0, , .		О
74	GaN Power p–n Diodes on Hydride Vapor Epitaxy GaN Substrates with Nearâ€Unity Ideality Factor and <0.5 ml©â€‰cm 2 Specific Onâ€Resistance. Physica Status Solidi - Rapid Research Letters, 0, , 2100599.	1.2	2