
Anand Narani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8502702/publications.pdf Version: 2024-02-01

ΔΝΑΝΟ ΝΑΡΑΝΙ

#	Article	IF	CITATIONS
1	Value addition of lignin to zingerone using recyclable AlPO4 and Ni/LRC catalysts. Chemical Engineering Journal, 2022, 431, 134130.	12.7	10
2	Thermochemical methods for upgrading of lignin to aromatic chemicals. , 2022, , 499-533.		1
3	Lignin Residue-Derived Carbon-Supported Nanoscale Iron Catalyst for the Selective Hydrogenation of Nitroarenes and Aromatic Aldehydes. ACS Omega, 2022, 7, 19804-19815.	3.5	11
4	Recent Trends in Upgrading of CO ₂ as a C1 Reactant in <i>Nâ€</i> and <i>Câ€</i> Methylation Reactions. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	7
5	Simple RuCl ₃ â€catalyzed <i>N</i> â€Methylation of Amines and Transfer Hydrogenation of Nitroarenes using Methanol. ChemCatChem, 2021, 13, 1722-1729.	3.7	41
6	Recent developments in reductive N-methylation with base-metal catalysts. Tetrahedron, 2021, 98, 132414.	1.9	16
7	Biorenewable carbon-supported Ru catalyst for <i>N</i> -alkylation of amines with alcohols and selective hydrogenation of nitroarenes. New Journal of Chemistry, 2021, 45, 14687-14694.	2.8	13
8	Biocarbon Supported Nanoscale Ruthenium Oxide-Based Catalyst for Clean Hydrogenation of Arenes and Heteroarenes. ACS Sustainable Chemistry and Engineering, 2020, 8, 15740-15754.	6.7	44
9	Pd-Nanoparticles immobilized organo-functionalized SBA-15: An efficient heterogeneous catalyst for selective hydrogenation of C C double bonds of α,β-unsaturated carbonyl compounds. Molecular Catalysis, 2020, 497, 111200.	2.0	6
10	Synthesis of Functional Chemicals from Ligninâ€derived Monomers by Selective Organic Transformations. Advanced Synthesis and Catalysis, 2020, 362, 5143-5169.	4.3	42
11	Carbon-Supported Cobalt Nanoparticles as Catalysts for the Selective Hydrogenation of Nitroarenes to Arylamines and Pharmaceuticals. ACS Applied Nano Materials, 2020, 3, 11070-11079.	5.0	38
12	Biomass waste rice husk derived silica supported palladium nanoparticles: an efficient catalyst for Suzuki–Miyaura and Heck–Mizoroki cross-coupling reactions. SN Applied Sciences, 2020, 2, 1.	2.9	3
13	Exploring the flexibility of cellulase cocktail obtained from mutant UV-8 of Talaromyces verruculosus IIPC 324 in depolymerising multiple agro-industrial lignocellulosic feedstocks. International Journal of Biological Macromolecules, 2020, 154, 538-544.	7.5	9
14	Molybdenum-catalyzed oxidative depolymerization of alkali lignin: Selective production of Vanillin. Applied Catalysis A: General, 2020, 598, 117567.	4.3	43
15	Commercial Pd/C-Catalyzed <i>N</i> -Methylation of Nitroarenes and Amines Using Methanol as Both C1 and H ₂ Source. Journal of Organic Chemistry, 2019, 84, 15389-15398.	3.2	67
16	Lignin Depolymerisation and Lignocellulose Fractionation by Solvated Electrons in Liquid Ammonia. ChemSusChem, 2017, 10, 1022-1032.	6.8	15
17	Dissolving Lignin in Water through Enzymatic Sulfation with Aryl Sulfotransferase. ChemSusChem, 2017, 10, 2267-2273.	6.8	17
18	Phenolic acetals from lignins of varying compositions via iron(<scp>iii</scp>) triflate catalysed depolymerisation. Green Chemistry, 2017, 19, 2774-2782.	9.0	136

Anand Narani

#	Article	IF	CITATIONS
19	One-pot synthesis of ethylbenzene/1-phenylethanol and γ-butyrolactone from simultaneous acetophenone hydrogenation and 1,4-butanediol dehydrogenation over copper based catalysts: effects of the support. RSC Advances, 2017, 7, 35346-35356.	3.6	17
20	Coupling of 1,4-Butanediol Dehydrogenation with Nitrobenzene Hydrogenation for Simultaneous Synthesis of γ-Butyrolactone and Aniline over Promoted Cu-MgO Catalysts: Effect of Promoters. Catalysis Letters, 2017, 147, 90-101.	2.6	14
21	Efficient catalytic hydrotreatment of Kraft lignin to alkylphenolics using supported NiW and NiMo catalysts in supercritical methanol. Green Chemistry, 2015, 17, 5046-5057.	9.0	106
22	Cu(<scp>ii</scp>) complex heterogenized on SBA-15: a highly efficient and additive-free solid catalyst for the homocoupling of alkynes. RSC Advances, 2014, 4, 3718-3725.	3.6	39
23	Selective benzylic oxidation of alkylaromatics over Cu/SBA-15 catalysts under solvent-free conditions. Catalysis Communications, 2013, 39, 5-9.	3.3	33