
Emmanuel Guiderdoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8502678/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Manipulation of Meiotic Recombination to Hasten Crop Improvement. Biology, 2022, 11, 369.	2.8	6
2	Assessment of the roles of SPO11-2 and SPO11-4 in meiosis in rice using CRISPR/Cas9 mutagenesis. Journal of Experimental Botany, 2020, 71, 7046-7058.	4.8	22
3	Bread wheat TaSPO11â€l exhibits evolutionarily conserved function in meiotic recombination across distant plant species. Plant Journal, 2020, 103, 2052-2068.	5.7	14
4	Construction and characterization of a knock-down RNA interference line of <i>OsNRPD1</i> in rice () Tj ETQq0 (B: Biological Sciences, 2020, 375, 20190338.	0 rgBT /(4.0	Overlock 107 8
5	Engineering meiotic recombination pathways in rice. Plant Biotechnology Journal, 2019, 17, 2062-2077.	8.3	23
6	A Critical Role of Sodium Flux via the Plasma Membrane Na ⁺ /H ⁺ Exchanger SOS1 in the Salt Tolerance of Rice. Plant Physiology, 2019, 180, 1046-1065.	4.8	149
7	AlSRG1, a novel gene encoding an RRM-type RNA-binding protein (RBP) from Aeluropus littoralis, confers salt and drought tolerance in transgenic tobacco. Environmental and Experimental Botany, 2018, 150, 25-36.	4.2	10
8	Overexpression of AlTMP2 gene from the halophyte grass Aeluropus littoralis in transgenic tobacco enhances tolerance to different abiotic stresses by improving membrane stability and deregulating some stress-related genes. Protoplasma, 2018, 255, 1161-1177.	2.1	24
9	Unleashing meiotic crossovers in crops. Nature Plants, 2018, 4, 1010-1016.	9.3	110
10	A Dual Role for the OsK5.2 Ion Channel in Stomatal Movements and K ⁺ Loading into Xylem Sap. Plant Physiology, 2017, 174, 2409-2418.	4.8	44
11	Production of lowâ€Cs ⁺ rice plants by inactivation of the K ⁺ transporter Os <scp>HAK</scp> 1 with the <scp>CRISPR</scp> â€Cas system. Plant Journal, 2017, 92, 43-56.	5.7	161
12	Targeted promoter editing for rice resistance to <i>Xanthomonas oryzae</i> pv. <i>oryzae</i> reveals differential activities for <i><scp>SWEET</scp>14</i> â€inducing <scp>TAL</scp> effectors. Plant Biotechnology Journal, 2017, 15, 306-317.	8.3	176
13	Expression of the Aeluropus littoralis AlSAP Gene Enhances Rice Yield under Field Drought at the Reproductive Stage. Frontiers in Plant Science, 2017, 8, 994.	3.6	20
14	Ectopic Expression of Aeluropus littoralis Plasma Membrane Protein Gene AlTMP1 Confers Abiotic Stress Tolerance in Transgenic Tobacco by Improving Water Status and Cation Homeostasis. International Journal of Molecular Sciences, 2017, 18, 692.	4.1	24
15	The wheat durable, multipathogen resistance gene <i>Lr34</i> confers partial blast resistance in rice. Plant Biotechnology Journal, 2016, 14, 1261-1268.	8.3	98
16	Members of BTB gene family regulate negatively nitrate uptake and nitrogen use efficiency in Arabidopsis thaliana and Oryza sativa. Plant Physiology, 2016, 171, pp.01731.2015.	4.8	90
17	Turning rice meiosis into mitosis. Cell Research, 2016, 26, 1242-1254.	12.0	103
18	The phenome analysis of mutant alleles in Leucine-Rich Repeat Receptor-Like Kinase genes in rice reveals new potential targets for stress tolerant cereals. Plant Science, 2016, 242, 240-249.	3.6	27

#	Article	IF	CITATIONS
19	The promoter of the AlSAP gene from the halophyte grass Aeluropus littoralis directs a stress-inducible expression pattern in transgenic rice plants. Plant Cell Reports, 2015, 34, 1791-1806.	5.6	18
20	OsMADS26 negatively regulates resistance to pathogens and drought tolerance in rice Plant Physiology, 2015, 169, pp.01192.2015.	4.8	81
21	Identification of <scp>CROWN ROOTLESS</scp> 1â€regulated genes in rice reveals specific and conserved elements of postembryonic root formation. New Phytologist, 2015, 206, 243-254.	7.3	43
22	SALT-RESPONSIVE ERF1 Is a Negative Regulator of Grain Filling and Gibberellin-Mediated Seedling Establishment in Rice. Molecular Plant, 2014, 7, 404-421.	8.3	55
23	The roots of future rice harvests. Rice, 2014, 7, 29.	4.0	57
24	Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice. Plant Biotechnology Journal, 2014, 12, 367-377.	8.3	73
25	The polycomb group gene <i><scp>EMF</scp>2B</i> is essential for maintenance of floral meristem determinacy in rice. Plant Journal, 2014, 80, 883-894.	5.7	53
26	Interaction between the <i>GROWTH-REGULATING FACTOR</i> and <i>KNOTTED1-LIKE HOMEOBOX</i> Families of Transcription Factors Â. Plant Physiology, 2014, 164, 1952-1966.	4.8	143
27	<scp>MULTIPASS</scp> , a rice R2R3â€ŧype <scp>MYB</scp> transcription factor, regulates adaptive growth by integrating multiple hormonal pathways. Plant Journal, 2013, 76, 258-273.	5.7	74
28	Analysis of the expression of the AGL17-like clade of MADS-box transcription factors in rice. Gene Expression Patterns, 2013, 13, 160-170.	0.8	60
29	SALT-RESPONSIVE ERF1 Regulates Reactive Oxygen Species-Dependent Signaling during the Initial Response to Salt Stress in Rice. Plant Cell, 2013, 25, 2115-2131.	6.6	289
30	International Consortium of Rice Mutagenesis: resources and beyond. Rice, 2013, 6, 39.	4.0	53
31	Mutant Resources for Functional Analysis of the Rice Genome. , 2013, , 81-115.		6
32	Reverse Genetics in Rice Using Tos17. Methods in Molecular Biology, 2013, 1057, 205-221.	0.9	6
33	An in planta, Agrobacterium-mediated transient gene expression method for inducing gene silencing in rice (Oryza sativa L.) leaves. Rice, 2012, 5, 23.	4.0	69
34	Regulation of Shoot and Root Development through Mutual Signaling. Molecular Plant, 2012, 5, 974-983.	8.3	78
35	Marker-free transgenic durum wheat cv. Karim expressing the AISAP gene exhibits a high level of tolerance to salinity and dehydration stresses. Molecular Breeding, 2012, 30, 521-533.	2.1	44
36	Expression of the <i>Aeluropus littoralis AlSAP</i> gene in rice confers broad tolerance to abiotic stresses through maintenance of photosynthesis. Plant, Cell and Environment, 2012, 35, 626-643.	5.7	71

Emmanuel Guiderdoni

#	Article	IF	CITATIONS
37	The halfâ€size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant Journal, 2012, 69, 906-920.	5.7	131
38	<i>OsWRKY22</i> , a monocot <i>WRKY</i> gene, plays a role in the resistance response to blast. Molecular Plant Pathology, 2012, 13, 828-841.	4.2	86
39	Inâ€depth molecular and phenotypic characterization in a rice insertion line library facilitates gene identification through reverse and forward genetics approaches. Plant Biotechnology Journal, 2012, 10, 555-568.	8.3	20
40	Transpositional landscape of the rice genome revealed by pairedâ€end mapping of highâ€ŧhroughput reâ€sequencing data. Plant Journal, 2011, 66, 241-246.	5.7	62
41	The genome of Theobroma cacao. Nature Genetics, 2011, 43, 101-108.	21.4	656
42	Promoter of the AlSAP gene from the halophyte grass Aeluropus littoralis directs developmental-regulated, stress-inducible, and organ-specific gene expression in transgenic tobacco. Transgenic Research, 2011, 20, 1003-1018.	2.4	38
43	Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger "AlSAP―gene isolated from the halophyte grass Aeluropus littoralis. Plant Molecular Biology, 2010, 72, 171-190.	3.9	109
44	Complex Regulation of Two Target Genes Encoding SPX-MFS Proteins by Rice miR827 in Response to Phosphate Starvation. Plant and Cell Physiology, 2010, 51, 2119-2131.	3.1	188
45	Cross Talk between the KNOX and Ethylene Pathways Is Mediated by Intron-Binding Transcription Factors in Barley Â. Plant Physiology, 2010, 154, 1616-1632.	4.8	51
46	Diversity in Expression Patterns and Functional Properties in the Rice HKT Transporter Family Â. Plant Physiology, 2009, 150, 1955-1971.	4.8	175
47	Mutant Resources in Rice for Functional Genomics of the Grasses. Plant Physiology, 2009, 149, 165-170.	4.8	167
48	Diversity of the Ty-1 copia retrotransposon Tos17 in rice (Oryza sativa L.) and the AA genome of the Oryza genus. Molecular Genetics and Genomics, 2009, 282, 633-652.	2.1	10
49	Identification of an active LTR retrotransposon in rice. Plant Journal, 2009, 58, 754-765.	5.7	60
50	Modulating Rice Stress Tolerance by Transcription Factors. Biotechnology and Genetic Engineering Reviews, 2008, 25, 381-404.	6.2	49
51	A potato carboxypeptidase inhibitor gene provides pathogen resistance in transgenic rice. Plant Biotechnology Journal, 2007, 5, 537-553.	8.3	45
52	Large-scale characterization of Tos17 insertion sites in a rice T-DNA mutant library. Plant Molecular Biology, 2007, 65, 587-601.	3.9	66
53	The Triticum aestivum non-specific lipid transfer protein (TaLtp) gene family: comparative promoter activity of six TaLtp genes in transgenic rice. Planta, 2007, 225, 843-862.	3.2	44
54	The promoter of the wheat puroindoline-a gene (PinA) exhibits a more complex pattern of activity than that of the PinB gene and is induced by wounding and pathogen attack in rice. Planta, 2006, 225, 287-300.	3.2	18

4

Emmanuel Guiderdoni

#	Article	IF	CITATIONS
55	Expression of the maize proteinase inhibitor (mpi) gene in rice plants enhances resistance against the striped stem borer (Chilo suppressalis): effects on larval growth and insect gut proteinases. Plant Biotechnology Journal, 2005, 3, 187-202.	8.3	78
56	Spatial control of transgene expression in rice (Oryza sativa L.) using the GAL4 enhancer trapping system. Plant Journal, 2005, 41, 779-789.	5.7	86
57	Enhancing gene targeting efficiency in higher plants: rice is on the move. Transgenic Research, 2005, 14, 1-14.	2.4	26
58	EU-OSTID: A Collection of Transposon Insertional Mutants for Functional Genomics in Rice. Plant Molecular Biology, 2005, 59, 99-110.	3.9	77
59	Bt rice harbouring cry genes controlled by a constitutive or wound-inducible promoter: protection and transgene expression under Mediterranean field conditions. Plant Biotechnology Journal, 2004, 2, 417-430.	8.3	90
60	High throughput T-DNA insertion mutagenesis in rice: a first step towardsin silicoreverse genetics. Plant Journal, 2004, 39, 450-464.	5.7	231
61	A Novel Two T-DNA Binary Vector Allows Efficient Generation of Marker-free Transgenic Plants in Three Elite Cultivars of Rice (Oryza sativa L.). Transgenic Research, 2004, 13, 271-287.	2.4	63
62	Rice Mutant Resources for Gene Discovery. Plant Molecular Biology, 2004, 54, 325-334.	3.9	221
63	Transposon-mediated generation of T-DNA- and marker-free rice plants expressing a Bt endotoxin gene. Molecular Breeding, 2002, 10, 165-180.	2.1	87
64	Rice genomics: Present and future. Plant Physiology and Biochemistry, 2001, 39, 323-334.	5.8	69
65	Title is missing!. Molecular Breeding, 2001, 7, 259-274.	2.1	38
66	Transposon Insertional Mutagenesis in Rice. Plant Physiology, 2001, 125, 1175-1177.	4.8	58
67	The distribution of T-DNA in the genomes of transgenic Arabidopsis and rice. FEBS Letters, 2000, 471, 161-164.	2.8	70
68	Cloning of a wheat puroindoline gene promoter by IPCR and analysis of promoter regions required for tissue-specific expression in transgenic rice seeds. Plant Molecular Biology, 1999, 39, 1101-1112.	3.9	56
69	Comparative histology of microprojectile-mediated gene transfer to embryogenic calli in japonica rice (Oryza sativa L.): influence of the structural organization of target tissues on genotype transformation ability. Plant Science, 1998, 138, 177-190.	3.6	11
70	Title is missing!. Molecular Breeding, 1997, 3, 105-113.	2.1	171