Hemant Ishwaran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8502033/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature, 2015, 520, 373-377.	27.8	1,955
2	Random survival forests. Annals of Applied Statistics, 2008, 2, .	1.1	1,592
3	Gibbs Sampling Methods for Stick-Breaking Priors. Journal of the American Statistical Association, 2001, 96, 161-173.	3.1	1,076
4	Tumor Interferon Signaling Regulates a Multigenic Resistance Program to Immune Checkpoint Blockade. Cell, 2016, 167, 1540-1554.e12.	28.9	830
5	Exosome Transfer from Stromal to Breast Cancer Cells Regulates Therapy Resistance Pathways. Cell, 2014, 159, 499-513.	28.9	659
6	Random forests for genomic data analysis. Genomics, 2012, 99, 323-329.	2.9	635
7	Spike and slab variable selection: Frequentist and Bayesian strategies. Annals of Statistics, 2005, 33, 730.	2.6	615
8	Evaluating Random Forests for Survival Analysis Using Prediction Error Curves. Journal of Statistical Software, 2012, 50, 1-23.	3.7	515
9	An interferon-related gene signature for DNA damage resistance is a predictive marker for chemotherapy and radiation for breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18490-18495.	7.1	484
10	Cancer of the Esophagus and Esophagogastric Junction: An Eighth Edition Staging Primer. Journal of Thoracic Oncology, 2017, 12, 36-42.	1.1	424
11	Cancer of the esophagus and esophagogastric junction. Cancer, 2010, 116, 3763-3773.	4.1	401
12	Optimum Lymphadenectomy for Esophageal Cancer. Annals of Surgery, 2010, 251, 46-50.	4.2	385
13	Random forest missing data algorithms. Statistical Analysis and Data Mining, 2017, 10, 363-377.	2.8	375
14	Comparison of CT and MR imaging in staging of neck metastases Radiology, 1998, 207, 123-130.	7.3	371
15	Lung metastasis genes couple breast tumor size and metastatic spread. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6740-6745.	7.1	331
16	High-Dimensional Variable Selection for Survival Data. Journal of the American Statistical Association, 2010, 105, 205-217.	3.1	329
17	Opposing Functions of Interferon Coordinate Adaptive and Innate Immune Responses to Cancer Immune Checkpoint Blockade. Cell, 2019, 178, 933-948.e14.	28.9	301
18	Variable importance in binary regression trees and forests. Electronic Journal of Statistics, 2007, 1, .	0.7	288

Hemant Ishwaran

#	Article	IF	CITATIONS
19	Markov chain Monte Carlo in approximate Dirichlet and beta two-parameter process hierarchical models. Biometrika, 2000, 87, 371-390.	2.4	215
20	Recommendations for pathologic staging (pTNM) of cancer of the esophagus and esophagogastric junction for the 8th edition AJCC/UICC staging manuals. Ecological Management and Restoration, 2016, 29, 897-905.	0.4	179
21	Random survival forests for competing risks. Biostatistics, 2014, 15, 757-773.	1.5	176
22	Signalling pathway for RKIP and Let-7 regulates and predicts metastatic breast cancer. EMBO Journal, 2011, 30, 4500-4514.	7.8	175
23	Exact and approximate sum representations for the Dirichlet process. Canadian Journal of Statistics, 2002, 30, 269-283.	0.9	166
24	Consistency of random survival forests. Statistics and Probability Letters, 2010, 80, 1056-1064.	0.7	160
25	Standard errors and confidence intervals for variable importance in random forest regression, classification, and survival. Statistics in Medicine, 2019, 38, 558-582.	1.6	160
26	Detecting Differentially Expressed Genes in Microarrays Using Bayesian Model Selection. Journal of the American Statistical Association, 2003, 98, 438-455.	3.1	136
27	Random survival forests for highâ€dimensional data. Statistical Analysis and Data Mining, 2011, 4, 115-132.	2.8	135
28	Approximate Dirichlet Process Computing in Finite Normal Mixtures. Journal of Computational and Graphical Statistics, 2002, 11, 508-532.	1.7	132
29	Identifying Important Risk Factors for Survival in Patient With Systolic Heart Failure Using Random Survival Forests. Circulation: Cardiovascular Quality and Outcomes, 2011, 4, 39-45.	2.2	122
30	The effect of splitting on random forests. Machine Learning, 2015, 99, 75-118.	5.4	121
31	A random forests quantile classifier for class imbalanced data. Pattern Recognition, 2019, 90, 232-249.	8.1	109
32	Worldwide Esophageal Cancer Collaboration: clinical staging data. Ecological Management and Restoration, 2016, 29, 707-714.	0.4	108
33	Estimating Individual Treatment Effect in Observational Data Using Random Forest Methods. Journal of Computational and Graphical Statistics, 2018, 27, 209-219.	1.7	102
34	Esophageal Cancer. Annals of Surgery, 2017, 265, 122-129.	4.2	101
35	Recommendations for clinical staging (cTNM) of cancer of the esophagus and esophagogastric junction for the 8th edition AJCC/UICC staging manuals. Ecological Management and Restoration, 2016, 29, 913-919.	0.4	99
36	Staging of Neuroblastoma at Imaging: Report of the Radiology Diagnostic Oncology Group. Radiology, 2002, 223, 168-175.	7.3	98

HEMANT ISHWARAN

#	Article	IF	CITATIONS
37	Recommendations for neoadjuvant pathologic staging (ypTNM) of cancer of the esophagus and esophagogastric junction for the 8th edition AJCC/UICC staging manuals. Ecological Management and Restoration, 2016, 29, 906-912.	0.4	78
38	Spike and Slab Gene Selection for Multigroup Microarray Data. Journal of the American Statistical Association, 2005, 100, 764-780.	3.1	77
39	A general class of hierarchical ordinal regression models with applications to correlated roc analysis. Canadian Journal of Statistics, 2000, 28, 731-750.	0.9	76
40	A novel approach to cancer staging: application to esophageal cancer. Biostatistics, 2009, 10, 603-620.	1.5	74
41	Computational Methods for Multiplicative Intensity Models Using Weighted Gamma Processes. Journal of the American Statistical Association, 2004, 99, 175-190.	3.1	73
42	Tumor Immunity and Survival as a Function of Alternative Neopeptides in Human Cancer. Cancer Immunology Research, 2018, 6, 276-287.	3.4	69
43	Worldwide Esophageal Cancer Collaboration: pathologic staging data. Ecological Management and Restoration, 2016, 29, 724-733.	0.4	68
44	Worldwide Esophageal Cancer Collaboration: neoadjuvant pathologic staging data. Ecological Management and Restoration, 2016, 29, 715-723.	0.4	66
45	Bayesian Model Selection in Finite Mixtures by Marginal Density Decompositions. Journal of the American Statistical Association, 2001, 96, 1316-1332.	3.1	65
46	Health-related quality of life after coronary artery bypass grafting: A gender analysis using the Duke Activity Status Index. Journal of Thoracic and Cardiovascular Surgery, 2004, 128, 284-295.	0.8	65
47	External Prognostic Validations and Comparisons of Age- and Gender-Adjusted Exercise Capacity Predictions. Journal of the American College of Cardiology, 2007, 50, 1867-1875.	2.8	65
48	Coronary Risk Prediction by Logical Analysis of Data. Annals of Operations Research, 2003, 119, 15-42.	4.1	62
49	Importance of Treadmill Exercise Time as an Initial Prognostic Screening Tool in Patients With Systolic Left Ventricular Dysfunction. Circulation, 2009, 119, 3189-3197.	1.6	50
50	Heart Transplantation. JACC: Heart Failure, 2020, 8, 557-568.	4.1	49
51	Use of Hundreds of Electrocardiographic Biomarkers for Prediction of Mortality in Postmenopausal Women. Circulation: Cardiovascular Quality and Outcomes, 2011, 4, 521-532.	2.2	47
52	Sex Differences in Mortality Based on United Network for Organ Sharing Status While Awaiting Heart Transplantation. Circulation: Heart Failure, 2017, 10, .	3.9	44
53	Identification of predicted individual treatment effects in randomized clinical trials. Statistical Methods in Medical Research, 2018, 27, 142-157.	1.5	43
54	Use of the Logical Analysis of Data Method for Assessing Long-Term Mortality Risk After Exercise Electrocardiography. Circulation, 2002, 106, 685-690.	1.6	42

HEMANT ISHWARAN

#	Article	IF	CITATIONS
55	Relative Risk Forests for Exercise Heart Rate Recovery as a Predictor of Mortality. Journal of the American Statistical Association, 2004, 99, 591-600.	3.1	38
56	Variables of importance in the Scientific Registry of Transplant Recipients database predictive of heart transplant waitlist mortality. American Journal of Transplantation, 2019, 19, 2067-2076.	4.7	37
57	Pathway hunting by random survival forests. Bioinformatics, 2013, 29, 99-105.	4.1	33
58	Independent and Identically Distributed Monte Carlo Algorithms for Semiparametric Linear Mixed Models. Journal of the American Statistical Association, 2002, 97, 1154-1166.	3.1	31
59	Biatrial maze procedure versus pulmonary vein isolation for atrial fibrillation during mitral valve surgery: New analytical approaches and end points. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, 234-243.e9.	0.8	31
60	BAMarraytrade mark: Java software for Bayesian analysis of variance for microarray data. BMC Bioinformatics, 2006, 7, 59.	2.6	29
61	Probability of atrial fibrillation after ablation: Using a parametric nonlinear temporal decomposition mixed effects model. Statistical Methods in Medical Research, 2018, 27, 126-141.	1.5	28
62	Univariate and multirater ordinal cumulative link regression with covariate specific cutpoints. Canadian Journal of Statistics, 2000, 28, 715-730.	0.9	24
63	Synthetic learning machines. BioData Mining, 2014, 7, 28.	4.0	24
64	A prediction-based alternative to P values in regression models. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 1130-1136.e4.	0.8	23
65	An integrative pathway-based clinical–genomic model for cancer survival prediction. Statistics and Probability Letters, 2010, 80, 1313-1319.	0.7	20
66	Applications of Hybrid Monte Carlo to Bayesian Generalized Linear Models: Quasicomplete Separation and Neural Networks. Journal of Computational and Graphical Statistics, 1999, 8, 779-799.	1.7	19
67	Precision Surgical Therapy for Adenocarcinoma of the Esophagus and Esophagogastric Junction. Journal of Thoracic Oncology, 2019, 14, 2164-2175.	1.1	19
68	Boosted multivariate trees for longitudinal data. Machine Learning, 2017, 106, 277-305.	5.4	18
69	MICA polymorphism identified by whole genome array associated with NKG2D-mediated cytotoxicity in T-cell large granular lymphocyte leukemia. Haematologica, 2010, 95, 1713-1721.	3.5	17
70	Consistency of spike and slab regression. Statistics and Probability Letters, 2011, 81, 1920-1928.	0.7	17
71	Applications of Hybrid Monte Carlo to Bayesian Generalized Linear Models: Quasicomplete Separation and Neural Networks. Journal of Computational and Graphical Statistics, 1999, 8, 779.	1.7	16
72	Unsupervised random forests. Statistical Analysis and Data Mining, 2021, 14, 144-167.	2.8	16

HEMANT ISHWARAN

#	Article	IF	CITATIONS
73	Gene Signature Is Associated with Early Stage Rectal Cancer Recurrence. Journal of the American College of Surgeons, 2010, 211, 187-195.	0.5	15
74	Commentary: The problem of class imbalance in biomedical data. Journal of Thoracic and Cardiovascular Surgery, 2021, 161, 1940-1941.	0.8	15
75	Quantitative Measures of Electrocardiographic Left Ventricular Mass, Conduction, and Repolarization, and Long-Term Survival After Coronary Artery Bypass Grafting. Circulation, 2007, 116, 888-893.	1.6	14
76	CART variance stabilization and regularization for high-throughput genomic data. Bioinformatics, 2006, 22, 2254-2261.	4.1	11
77	Random Survival Forests Analysis of Intraoperative Complications as Predictors of Descemet Stripping Automated Endothelial Keratoplasty Graft Failure in the Cornea Preservation Time Study. JAMA Ophthalmology, 2021, 139, 191.	2.5	11
78	Value of Lymphadenectomy in Patients Receiving Neoadjuvant Therapy for Esophageal Adenocarcinoma. Annals of Surgery, 2021, 274, e320-e327.	4.2	10
79	Information in semiparametric mixtures of exponential families. Annals of Statistics, 1999, 27, 159.	2.6	7
80	Enhancing Multimedia Imbalanced Concept Detection Using VIMP in Random Forests. , 2016, 2016, 601-608.		7
81	Discussion on "Nonparametric variable importance assessment using machine learning techniques―by Brian D. Williamson, Peter B. Gilbert, Marco Carone, and Noah Simon. Biometrics, 2021, 77, 23-27.	1.4	6
82	Cure and death play a role in understanding dynamics for COVID-19: Data-driven competing risk compartmental models, with and without vaccination. PLoS ONE, 2021, 16, e0254397.	2.5	6
83	Boosting for Multivariate Longitudinal Responses. SN Computer Science, 2022, 3, 1.	3.6	6
84	Clustering gene expression profile data by selective shrinkage. Statistics and Probability Letters, 2008, 78, 1490-1497.	0.7	4
85	Oesophageal cancer: location, location, location: Figure 1:. European Journal of Cardio-thoracic Surgery, 2015, 48, 194-195.	1.4	4
86	REPLY: THE STANDARDIZATION AND AUTOMATION OF MACHINE LEARNING FOR BIOMEDICAL DATA. Journal of Thoracic and Cardiovascular Surgery, 2022, 163, e102-e103.	0.8	4
87	Gene hunting with forests for multigroup time course data. Statistics and Probability Letters, 2009, 79, 1146-1154.	0.7	2
88	Ensemble survival tree models to reveal pairwise interactions of variables with time-to-events outcomes in low-dimensional setting. Statistical Applications in Genetics and Molecular Biology, 2018, 17, .	0.6	2
89	The CHA2DS2-VASc Score for Risk Stratification of Stroke in Heart Failure With-vs-Without Atrial Fibrillation. American Journal of Cardiology, 2021, 155, 72-77.	1.6	1
90	Comments on: Nonparametric inference based onÂpanel count data. Test, 2011, 20, 48-53.	1.1	0

#	Article	IF	CITATIONS
91	Commentary: To classify means to choose a threshold. Journal of Thoracic and Cardiovascular Surgery, 2023, 165, 1443-1445.	0.8	0
92	MICA Polymorphism Identified by Whole Genome Array Constitutes a Disease Predisposition Factor in T-Cell Large Granular Lymphocyte Leukemia Blood, 2007, 110, 3304-3304.	1.4	0
93	Tree Variable Selection for Paired Case–Control Studies with Application to Microbiome Data. Frontiers in Probability and the Statistical Sciences, 2021, , 295-310.	0.1	ο