
Daniel G Gomes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8501983/publications.pdf Version: 2024-02-01

ANDEL C. C.C.

#	Article	IF	CITATIONS
1	Nanocellulose Production: Exploring the Enzymatic Route and Residues of Pulp and Paper Industry. Molecules, 2020, 25, 3411.	3.8	101
2	Cellulase recycling in biorefineries—is it possible?. Applied Microbiology and Biotechnology, 2015, 99, 4131-4143.	3.6	64
3	Identification of candidate genes for yeast engineering to improve bioethanol production in very high gravity and lignocellulosic biomass industrial fermentations. Biotechnology for Biofuels, 2011, 4, 57.	6.2	44
4	Enzyme immobilization as a strategy towards efficient and sustainable lignocellulosic biomass conversion into chemicals and biofuels: current status and perspectives. Sustainable Energy and Fuels, 2021, 5, 4233-4247.	4.9	42
5	Valorizing recycled paper sludge by a bioethanol production process with cellulase recycling. Bioresource Technology, 2016, 216, 637-644.	9.6	36
6	Cell recycling during repeated very high gravity bio-ethanol fermentations using the industrial Saccharomyces cerevisiae strain PE-2. Biotechnology Letters, 2012, 34, 45-53.	2.2	35
7	Insights into the economic viability of cellulases recycling on bioethanol production from recycled paper sludge. Bioresource Technology, 2018, 267, 347-355.	9.6	29
8	Determinants on an efficient cellulase recycling process for the production of bioethanol from recycled paper sludge under high solid loadings. Biotechnology for Biofuels, 2018, 11, 111.	6.2	29
9	Co-production of biofuels and value-added compounds from industrial Eucalyptus globulus bark residues using hydrothermal treatment. Fuel, 2021, 285, 119265.	6.4	29
10	Cell surface engineering of Saccharomyces cerevisiae for simultaneous valorization of corn cob and cheese whey via ethanol production. Energy Conversion and Management, 2021, 243, 114359.	9.2	27
11	Very High Gravity Bioethanol Revisited: Main Challenges and Advances. Fermentation, 2021, 7, 38.	3.0	21
12	Strategies towards Reduction of Cellulases Consumption: Debottlenecking the Economics of Lignocellulosics Valorization Processes. Polysaccharides, 2021, 2, 287-310.	4.8	18
13	Genome-Wide Semi-Automated Annotation of Transporter Systems. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14, 443-456.	3.0	14
14	Recombinant family 3 carbohydrate-binding module as a new additive for enhanced enzymatic saccharification of whole slurry from autohydrolyzed Eucalyptus globulus wood. Cellulose, 2018, 25, 2505-2514.	4.9	14
15	Plasmid-mediate transfer of FLO1 into industrial Saccharomyces cerevisiae PE-2 strain creates a strain useful for repeat-batch fermentations involving flocculation–sedimentation. Bioresource Technology, 2012, 108, 162-168.	9.6	13
16	Genome-wide metabolic re-annotation of Ashbya gossypii: new insights into its metabolism through a comparative analysis with Saccharomyces cerevisiae and Kluyveromyces lactis. BMC Genomics, 2014, 15, 810.	2.8	13
17	Economic determinants on the implementation of a Eucalyptus wood biorefinery producing biofuels, energy and high added-value compounds. Applied Energy, 2021, 303, 117662.	10.1	12
18	Integrated technologies for extractives recovery, fractionation, and bioethanol production from		1

Integrated technologies for extra-lignocellulose. , 2022, , 107-139. ves recovery, fractionation, and bioethanol production from 18