Amanda Penélope GarcÃ-a MarÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8501615/publications.pdf

Version: 2024-02-01

623574 752573 35 468 14 20 g-index citations h-index papers 36 36 36 531 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	New machine learning approaches to improve reference evapotranspiration estimates using intra-daily temperature-based variables in a semi-arid region of Spain. Agricultural Water Management, 2021, 245, 106558.	2.4	37
2	Applying multifractality and the self-organized criticality theory to describe the temporal rainfall regimes in Andalusia (southern Spain). Hydrological Processes, 2008, 22, 295-308.	1.1	31
3	Selecting the best IDF model by using the multifractal approach. Hydrological Processes, 2013, 27, 433-443.	1.1	31
4	The history of rainfall data time-resolution in a wide variety of geographical areas. Journal of Hydrology, 2020, 590, 125258.	2.3	29
5	Assessing new intra-daily temperature-based machine learning models to outperform solar radiation predictions in different conditions. Applied Energy, 2021, 298, 117211.	5.1	25
6	Quality assurance procedures for validating meteorological input variables of reference evapotranspiration in mendoza province (Argentina). Agricultural Water Management, 2016, 172, 96-109.	2.4	24
7	The identification of an appropriate Minimum Interâ€event Time (MIT) based on multifractal characterization of rainfall data series. Hydrological Processes, 2016, 30, 3507-3517.	1.1	23
8	Delimiting homogeneous regions using the multifractal properties of validated rainfall data series. Journal of Hydrology, 2015, 529, 106-119.	2.3	22
9	Monthly Precipitation Forecasts Using Wavelet Neural Networks Models in a Semiarid Environment. Water (Switzerland), 2020, 12, 1909.	1.2	21
10	Multifractal analysis of validated wind speed time series. Chaos, 2013, 23, 013133.	1.0	20
11	On the choice of the optimal frequency analysis of annual extreme rainfall by multifractal approach. Journal of Hydrology, 2019, 575, 1267-1279.	2.3	17
12	Assessing Machine Learning Models for Gap Filling Daily Rainfall Series in a Semiarid Region of Spain. Atmosphere, 2021, 12, 1158.	1.0	17
13	Regional analysis of the annual maximum daily rainfall in the province of Malaga (southern Spain) using the principal component analysis. Water and Environment Journal, 2011, 25, 522-531.	1.0	16
14	Detection of spurious precipitation signals from automatic weather stations in irrigated areas. International Journal of Climatology, 2015, 35, 1556-1568.	1.5	16
15	Multifractal analysis as a tool for validating a rainfall model. Hydrological Processes, 2008, 22, 2672-2688.	1.1	15
16	Spatial regression test for ensuring temperature data quality in southern Spain. Theoretical and Applied Climatology, 2018, 131, 309-318.	1.3	13
17	Assessing Inhomogeneities in Extreme Annual Rainfall Data Series by Multifractal Approach. Water (Switzerland), 2020, 12, 1030.	1.2	13
18	Obtaining Homogeneous Regions by Determining the Generalized Fractal Dimensions of Validated Daily Rainfall Data Sets. Water Resources Management, 2017, 31, 2333-2348.	1.9	11

#	Article	IF	CITATIONS
19	A More Efficient Rainfall Intensity-Duration-Frequency Relationship by Using an "at-site―Regional Frequency Analysis: Application at Mediterranean Climate Locations. Water Resources Management, 2015, 29, 3243-3263.	1.9	9
20	Multifractal analysis of diurnal temperature range over Southern Spain using validated datasets. Chaos, 2019, 29, 063105.	1.0	9
21	AgroML: An Open-Source Repository to Forecast Reference Evapotranspiration in Different Geo-Climatic Conditions Using Machine Learning and Transformer-Based Models. Agronomy, 2022, 12, 656.	1.3	9
22	Data validation procedures in agricultural meteorology $\hat{a} \in \hat{a}$ a prerequisite for their use. Advances in Science and Research, 2011, 6, 141-146.	1.0	7
23	Detection of trends and break points in temperature: the case of Umbria (Italy) and Guadalquivir Valley (Spain). Acta Geophysica, 2018, 66, 329-343.	1.0	7
24	The use of the exponentK(q)function to delimit homogeneous regions in regional frequency analysis of extreme annual daily rainfall. Hydrological Processes, 2015, 29, 139-151.	1.1	6
25	A Simple Scaling Analysis of Rainfall in Andalusia (Spain) under Different Precipitation Regimes. Water (Switzerland), 2022, 14, 1303.	1.2	6
26	Spatial and Trend Analyses of Rainfall Seasonality and Erosivity in the West of Andalusia (Period) Tj ETQq0 0 0 r	gBT/Qverl	ock ₅ 10 Tf 50 4
27	Multifractal analysis to study break points in temperature data sets. Chaos, 2019, 29, 093116.	1.0	5
28	On the applicability of temporal stability analysis to raingauge network design. Hydrological Sciences Journal, 2019, 64, 1424-1438.	1.2	4
29	Innovative Student Response System Methodologies for Civil Engineering Practical Lectures. Technology, Knowledge and Learning, 2020, 25, 835-852.	3.1	4
30	A quality control procedure for long-term series of daily precipitation data in a semiarid environment. Theoretical and Applied Climatology, 2022, 149, 1029-1041.	1.3	4
31	Description of the Daily Number of Rain-Free Hours Series from a Location in Southern Spain by Using the Multifractal Turbulence Formalism. Journal of Hydrologic Engineering - ASCE, 2008, 13, 987-991.	0.8	3
32	Free surface profiles in river flows: Can standard energy-based gradually-varied flow computations be pursued?. Journal of Hydrology, 2015, 529, 1644-1656.	2.3	3
33	Local Analysis of the Characteristics and Frequency of Extreme Droughts in $M\tilde{A}_i$ laga Using the SPI (Standardized Precipitation Index). Lecture Notes in Management and Industrial Engineering, 2015, , 167-179.	0.3	3
34	Assessing Neural Network Approaches for Solar Radiation Estimates Using Limited Climatic Data in the Mediterranean Sea. Environmental Sciences Proceedings, 2020, 4, .	0.3	2
35	Multifractal Characterization of Seismic Activity in the Provinces of Esmeraldas and Manab \tilde{A}_{7} Ecuador. Proceedings (mdpi), 2019, 24, 27.	0.2	1