
Amanda Penélope GarcÃ-a MarÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8501615/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	AgroML: An Open-Source Repository to Forecast Reference Evapotranspiration in Different Geo-Climatic Conditions Using Machine Learning and Transformer-Based Models. Agronomy, 2022, 12, 656.	1.3	9
2	A Simple Scaling Analysis of Rainfall in Andalusia (Spain) under Different Precipitation Regimes. Water (Switzerland), 2022, 14, 1303.	1.2	6
3	A quality control procedure for long-term series of daily precipitation data in a semiarid environment. Theoretical and Applied Climatology, 2022, 149, 1029-1041.	1.3	4
4	New machine learning approaches to improve reference evapotranspiration estimates using intra-daily temperature-based variables in a semi-arid region of Spain. Agricultural Water Management, 2021, 245, 106558.	2.4	37
5	Assessing new intra-daily temperature-based machine learning models to outperform solar radiation predictions in different conditions. Applied Energy, 2021, 298, 117211.	5.1	25
6	Assessing Machine Learning Models for Gap Filling Daily Rainfall Series in a Semiarid Region of Spain. Atmosphere, 2021, 12, 1158.	1.0	17
7	Innovative Student Response System Methodologies for Civil Engineering Practical Lectures. Technology, Knowledge and Learning, 2020, 25, 835-852.	3.1	4
8	Monthly Precipitation Forecasts Using Wavelet Neural Networks Models in a Semiarid Environment. Water (Switzerland), 2020, 12, 1909.	1.2	21
9	The history of rainfall data time-resolution in a wide variety of geographical areas. Journal of Hydrology, 2020, 590, 125258.	2.3	29
10	Assessing Inhomogeneities in Extreme Annual Rainfall Data Series by Multifractal Approach. Water (Switzerland), 2020, 12, 1030.	1.2	13
11	Assessing Neural Network Approaches for Solar Radiation Estimates Using Limited Climatic Data in the Mediterranean Sea. Environmental Sciences Proceedings, 2020, 4, .	0.3	2
12	Multifractal analysis of diurnal temperature range over Southern Spain using validated datasets. Chaos, 2019, 29, 063105.	1.0	9
13	On the applicability of temporal stability analysis to raingauge network design. Hydrological Sciences Journal, 2019, 64, 1424-1438.	1.2	4
14	Multifractal analysis to study break points in temperature data sets. Chaos, 2019, 29, 093116.	1.0	5
15	On the choice of the optimal frequency analysis of annual extreme rainfall by multifractal approach. Journal of Hydrology, 2019, 575, 1267-1279.	2.3	17
16	Multifractal Characterization of Seismic Activity in the Provinces of Esmeraldas and ManabÃ , Ecuador. Proceedings (mdpi), 2019, 24, 27.	0.2	1
17	Detection of trends and break points in temperature: the case of Umbria (Italy) and Guadalquivir Valley (Spain). Acta Geophysica, 2018, 66, 329-343.	1.0	7
18	Spatial regression test for ensuring temperature data quality in southern Spain. Theoretical and Applied Climatology, 2018, 131, 309-318.	1.3	13

#	Article	IF	CITATIONS
19	Obtaining Homogeneous Regions by Determining the Generalized Fractal Dimensions of Validated Daily Rainfall Data Sets. Water Resources Management, 2017, 31, 2333-2348.	1.9	11
20	Spatial and Trend Analyses of Rainfall Seasonality and Erosivity in the West of Andalusia (Period) Tj ETQq0 0 0 rg	BT/Qverlc	ock ₅ 10 Tf 50 7
21	The identification of an appropriate Minimum Interâ€event Time (MIT) based on multifractal characterization of rainfall data series. Hydrological Processes, 2016, 30, 3507-3517.	1.1	23
22	Quality assurance procedures for validating meteorological input variables of reference evapotranspiration in mendoza province (Argentina). Agricultural Water Management, 2016, 172, 96-109.	2.4	24
23	Detection of spurious precipitation signals from automatic weather stations in irrigated areas. International Journal of Climatology, 2015, 35, 1556-1568.	1.5	16
24	The use of the exponentK(q)function to delimit homogeneous regions in regional frequency analysis of extreme annual daily rainfall. Hydrological Processes, 2015, 29, 139-151.	1.1	6
25	Delimiting homogeneous regions using the multifractal properties of validated rainfall data series. Journal of Hydrology, 2015, 529, 106-119.	2.3	22
26	A More Efficient Rainfall Intensity-Duration-Frequency Relationship by Using an "at-site―Regional Frequency Analysis: Application at Mediterranean Climate Locations. Water Resources Management, 2015, 29, 3243-3263.	1.9	9

27	Free surface profiles in river flows: Can standard energy-based gradually-varied flow computations be pursued?. Journal of Hydrology, 2015, 529, 1644-1656.	2.3	3
28	Local Analysis of the Characteristics and Frequency of Extreme Droughts in Málaga Using the SPI (Standardized Precipitation Index). Lecture Notes in Management and Industrial Engineering, 2015, , 167-179.	0.3	3
29	Selecting the best IDF model by using the multifractal approach. Hydrological Processes, 2013, 27, 433-443.	1.1	31
30	Multifractal analysis of validated wind speed time series. Chaos, 2013, 23, 013133.	1.0	20
31	Regional analysis of the annual maximum daily rainfall in the province of Malaga (southern Spain) using the principal component analysis. Water and Environment Journal, 2011, 25, 522-531.	1.0	16
32	Data validation procedures in agricultural meteorology – a prerequisite for their use. Advances in Science and Research, 2011, 6, 141-146.	1.0	7
33	Applying multifractality and the self-organized criticality theory to describe the temporal rainfall regimes in Andalusia (southern Spain). Hydrological Processes, 2008, 22, 295-308.	1.1	31
34	Multifractal analysis as a tool for validating a rainfall model. Hydrological Processes, 2008, 22, 2672-2688.	1.1	15

35	Description of the Daily Number of Rain-Free Hours Series from a Location in Southern Spain by Using the Multifractal Turbulence Formalism. Journal of Hydrologic Engineering - ASCE, 2008, 13, 987-991.	0.8	3	
----	--	-----	---	--