
Hanna Tiainen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8501394/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deposition Kinetics of Bioinspired Phenolic Coatings on Titanium Surfaces. Langmuir, 2016, 32, 8050-8060.	1.6	76
2	Ultra-porous titanium oxide scaffold with high compressive strength. Journal of Materials Science: Materials in Medicine, 2010, 21, 2783-2792.	1.7	69
3	A Novel Ultra-porous Titanium Dioxide Ceramic with Excellent Biocompatibility. Journal of Biomaterials Applications, 2011, 25, 559-580.	1.2	67
4	Oxidative power of aqueous non-irradiated TiO 2 -H 2 O 2 suspensions: Methylene blue degradation and the role of reactive oxygen species. Applied Catalysis B: Environmental, 2016, 198, 9-15.	10.8	57
5	Bone formation in TiO2 bone scaffolds in extraction sockets of minipigs. Acta Biomaterialia, 2012, 8, 2384-2391.	4.1	56
6	Processing of highly porous TiO2 bone scaffolds with improved compressive strength. Journal of the European Ceramic Society, 2013, 33, 15-24.	2.8	47
7	Gelatin–poly(vinyl alcohol) porous biocomposites reinforced with graphene oxide as biomaterials. Journal of Materials Chemistry B, 2016, 4, 282-291.	2.9	39
8	Ceramic scaffolds enriched with gentamicin loaded poly(lactide- co -glycolide) microparticles for prevention and treatment of bone tissue infections. Materials Science and Engineering C, 2016, 69, 856-864.	3.8	36
9	Enhanced in vitro osteoblast differentiation on TiO ₂ scaffold coated with alginate hydrogel containing simvastatin. Journal of Tissue Engineering, 2013, 4, 204173141351567.	2.3	30
10	Osteogenic potential of poly(ethylene glycol)-amorphous calcium phosphate composites on human mesenchymal stem cells. Journal of Tissue Engineering, 2020, 11, 204173142092684.	2.3	30
11	Enhanced Osteoblast Differentiation on Scaffolds Coated with TiO2 Compared to SiO2 and CaP Coatings. Biointerphases, 2012, 7, 36.	0.6	29
12	Antibacterial effect of hydrogen peroxide-titanium dioxide suspensions in the decontamination of rough titanium surfaces. Biofouling, 2017, 33, 451-459.	0.8	27
13	Polycaprolactone / bioactive glass hybrid scaffolds for bone regeneration. Biomedical Glasses, 2018, 4, 108-122.	2.4	27
14	Stabilisation of amorphous calcium phosphate in polyethylene glycol hydrogels. Acta Biomaterialia, 2019, 90, 132-145.	4.1	27
15	Design of an inorganic dual-paste apatite cement using cation exchange. Journal of Materials Science: Materials in Medicine, 2015, 26, 63.	1.7	23
16	Effect of ZrO2 addition on the mechanical properties of porous TiO2 bone scaffolds. Materials Science and Engineering C, 2012, 32, 1386-1393.	3.8	21
17	Silicic Acid-Mediated Formation of Tannic Acid Nanocoatings. Langmuir, 2019, 35, 3327-3336.	1.6	21
18	Impact of trace elements on biocompatibility of titanium scaffolds. Biomedical Materials (Bristol), 2010, 5, 015003.	1.7	20

Hanna Tiainen

#	Article	IF	CITATIONS
19	Silicateâ€Phenolic Networks: Coordinationâ€Mediated Deposition of Bioinspired Tannic Acid Coatings. Chemistry - A European Journal, 2019, 25, 9870-9874.	1.7	20
20	Clinical color intensity of white spot lesions might be a better predictor of enamel demineralization depth than traditional clinical grading. American Journal of Orthodontics and Dentofacial Orthopedics, 2012, 142, 191-198.	0.8	18
21	Antibacterial effect of doxycycline-coated dental abutment surfaces. Biomedical Materials (Bristol), 2015, 10, 055003.	1.7	18
22	Enhanced X-ray absorption for micro-CT analysis of low density polymers. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 805-823.	1.9	18
23	Comparison of titanium dioxide scaffold with commercial bone graft materials through micro-finite element modelling in flow perfusion. Medical and Biological Engineering and Computing, 2019, 57, 311-324.	1.6	18
24	Tannic Acid Radicals in the Presence of Alkali Metal Salts and Their Impact on the Formation of Silicate-Phenolic Networks. ACS Applied Materials & Interfaces, 2020, 12, 52457-52466.	4.0	18
25	The effect of fluoride surface modification of ceramic TiO ₂ on the surface properties and biological response of osteoblastic cells <i>in vitro</i> . Biomedical Materials (Bristol), 2011, 6, 045006.	1.7	17
26	Ceramic scaffolds with immobilized vancomycin-loaded poly(lactide-co-glycolide) microparticles for bone defects treatment. Materials Letters, 2017, 190, 67-70.	1.3	17
27	Coating of metal implant materials with strontium. Journal of Materials Science: Materials in Medicine, 2013, 24, 2537-2548.	1.7	15
28	The effect of hydrofluoric acid treatment of titanium and titanium dioxide surface on primary human osteoblasts. Clinical Oral Implants Research, 2014, 25, 385-394.	1.9	15
29	Antibacterial Surface Coating for Bone Scaffolds Based on the Dark Catalytic Effect of Titanium Dioxide. ACS Applied Materials & Interfaces, 2018, 10, 35784-35793.	4.0	15
30	TiO ₂ Scaffolds Sustain Differentiation of MC3T3-E1 Cells. Journal of Biomaterials and Tissue Engineering, 2012, 2, 336-344.	0.0	14
31	Alginate hydrogel enriched with enamel matrix derivative to target osteogenic cell differentiation in TiO2 scaffolds. Journal of Tissue Engineering, 2015, 6, 204173141557587.	2.3	13
32	Sodium alendronate loaded poly(<scp>l</scp> -lactide- <i>co</i> -glycolide) microparticles immobilized on ceramic scaffolds for local treatment of bone defects. International Journal of Energy Production and Management, 2021, 8, 293-302.	1.9	13
33	Effect of TiO ₂ scaffolds coated with alginate hydrogel containing a prolineâ€rich peptide on osteoblast growth and differentiation <i>in vitro</i> . Journal of Biomedical Materials Research - Part A, 2013, 101A, 1768-1777.	2.1	12
34	Injectable synthetic hydrogel for bone regeneration: Physicochemical characterisation of a high and a low pH gelling system. Materials Science and Engineering C, 2018, 90, 67-76.	3.8	11
35	Adiponectin Reduces Bone Stiffness: Verified in a Three-Dimensional Artificial Human Bone Model In Vitro. Frontiers in Endocrinology, 2018, 9, 236.	1.5	11
36	<i>In Vitro</i> Performance of Bioinspired Phenolic Nanocoatings for Endosseous Implant Applications. ACS Biomaterials Science and Engineering, 2019, 5, 3340-3351.	2.6	11

Hanna Tiainen

#	Article	IF	CITATIONS
37	Multifunctional Surfaces for Improving Soft Tissue Integration. Advanced Healthcare Materials, 2021, 10, e2001985.	3.9	11
38	Human Platelet Lysate-Loaded Poly(ethylene glycol) Hydrogels Induce Stem Cell Chemotaxis <i>In Vitro</i> . Biomacromolecules, 2021, 22, 3486-3496.	2.6	11
39	Effect of cathodic polarization on coating doxycycline on titanium surfaces. Materials Science and Engineering C, 2016, 63, 359-366.	3.8	10
40	Coagulated concentrated anatase slurry leads to improved strength of ceramic TiO2 bone scaffolds. Ceramics International, 2018, 44, 6265-6271.	2.3	10
41	Attachment and spatial organisation of human mesenchymal stem cells on poly(ethylene glycol) hydrogels. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 84, 46-53.	1.5	10
42	Atomic layer deposited TiO2 protects porous ceramic foams from grain boundary corrosion. Corrosion Science, 2016, 106, 35-42.	3.0	9
43	Cell growth on pore-graded biomimetic TiO2 bone scaffolds. Journal of Biomaterials Applications, 2015, 29, 1284-1295.	1.2	8
44	TiO ₂ scaffolds in periâ€implant dehiscence defects: an experimental pilot study. Clinical Oral Implants Research, 2016, 27, 1200-1206.	1.9	7
45	Impact of particulate deproteinized bovine bone mineral and porous titanium granules on early stability and osseointegration of dental implants in narrow marginal circumferential bone defects. International Journal of Oral and Maxillofacial Surgery, 2018, 47, 1086-1094.	0.7	7
46	Impact of simultaneous placement of implant and block bone graft substitute: an in vivo peri-implant defect model. Biomaterials Research, 2021, 25, 43.	3.2	6
47	Grain boundary corrosion of highly porous ceramic TiO 2 foams is reduced by annealing and quenching. Journal of the European Ceramic Society, 2016, 36, 179-188.	2.8	5
48	Grain boundary corrosion in TiO2 bone scaffolds doped with group II cations. Journal of the European Ceramic Society, 2019, 39, 1577-1585.	2.8	5
49	Highly porous Sr-doped TiO2 ceramics maintain compressive strength after grain boundary corrosion. Journal of the European Ceramic Society, 2021, 41, 5721-5727.	2.8	5
50	Characterization of the foreign body response of titanium implants modified with polyphenolic coatings. Journal of Biomedical Materials Research - Part A, 2022, 110, 1341-1355.	2.1	5
51	The influence of sintering conditions on microstructure and mechanical properties of titanium dioxide scaffolds for the treatment of bone tissue defects. Acta of Bioengineering and Biomechanics, 2015, 17, 3-9.	0.2	4
52	Dimensional Ridge Preservation with a Novel Highly Porous TiO2Scaffold: An Experimental Study in Minipigs. International Journal of Biomaterials, 2012, 2012, 1-9.	1.1	2
53	Development and initial testing of an in vitro model simulating class II furcation defects. Clinical and Experimental Dental Research, 2021, 7, 179-188.	0.8	1