

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8501169/publications.pdf Version: 2024-02-01

VUE KUO

#	Article	IF	CITATIONS
1	Communication—Exploration of Plasma Oxidized Copper Oxide as a Copper Passivation Layer. ECS Journal of Solid State Science and Technology, 2022, 11, 035005.	1.8	0
2	Study on Lifetimes of Plasma Etched Ru Lines. ECS Transactions, 2022, 108, 23-30.	0.5	0
3	Study on Lifetimes of Plasma Etched Ru Lines. ECS Meeting Abstracts, 2022, MA2022-01, 1271-1271.	0.0	Ο
4	Comparison of Temperature and Light Distributions Around Nano-Resistors in SSI-LEDs. ECS Meeting Abstracts, 2022, MA2022-01, 1303-1303.	0.0	0
5	Electrical and Optical Characteristics of WOx, ZrHfO, and Tri-Layer WOx Embedded ZrHfO High-k Based SSI-LEDs. ECS Meeting Abstracts, 2021, MA2021-01, 1078-1078.	0.0	0
6	Layer Thickness Effect on Lifetime of Copper Oxide Passivated Plasma Etched Copper Line. ECS Transactions, 2021, 102, 167-175.	0.5	0
7	Geometrical Layout Effect on Light Intensity Distribution in SSI-LED. ECS Meeting Abstracts, 2021, MA2021-01, 1000-1000.	0.0	0
8	Layer Thickness Effect on Lifetime of Copper Oxide Passivated Plasma Etched Copper Line. ECS Meeting Abstracts, 2021, MA2021-01, 1005-1005.	0.0	0
9	Electrical and Optical Characteristics of WOx, ZrHfO, and Tri-Layer WOx Embedded ZrHfO High-k Based SSI-LEDs. ECS Transactions, 2021, 102, 63-69.	0.5	1
10	Geometrical Layout Effect on Light Intensity Distribution in SSI-LED. ECS Transactions, 2021, 102, 159-164.	0.5	2
11	Characteristics of Nickel Oxide Modified Zr-Doped HfO2 High-k Thin Films. ECS Transactions, 2021, 104, 63-67.	0.5	0
12	Si Substrate Effect on Characteristics of Solid State Incandescent Light Emitting Devices. ECS Transactions, 2021, 104, 47-53.	0.5	0
13	Two-level differential burn-in policy for spatially heterogeneous defect units in semiconductor manufacturing. Computers and Industrial Engineering, 2021, 162, 107768.	6.3	3
14	Characteristics of Nickel Oxide Modified Zr-Doped HfO2 High-k Thin Films. ECS Meeting Abstracts, 2021, MA2021-02, 626-626.	0.0	0
15	Si Substrate Effect on Characteristics of Solid State Incandescent Light Emitting Devices. ECS Meeting Abstracts, 2021, MA2021-02, 620-620.	0.0	0
16	Numerical Analysis of Oxygen-Related Defects in Amorphous In-W-O Nanosheet Thin-Film Transistor. Nanomaterials, 2021, 11, 3070.	4.1	6
17	Simulation of SSI-LED Light Emission Pattern Using Python As a Simulation Framework. ECS Meeting Abstracts, 2021, MA2021-02, 1826-1826.	0.0	1
18	Electrical and Optical Characteristics of SSI-LED Made from Capacitor Containing Tri-Layer WO _x Embedded Zr-Doped HfO _x Gate Dielectric. ECS Journal of Solid State Science and Technology, 2021, 10, 126001.	1.8	1

#	Article	IF	CITATIONS
19	Statistical Models of Overdispersed Spatial Defects for Predicting the Yield of Integrated Circuits. IEEE Transactions on Reliability, 2020, 69, 510-521.	4.6	2
20	A Differential Burn-in Policy Considering Nonhomogeneous Distribution of Spatial Defects in Semiconductor Manufacturing. , 2020, , .		1
21	Comparison of simulated and measured light emission spectra from solid state incandescent light emitting devices. MRS Advances, 2020, 5, 2033-2041.	0.9	0
22	Self-aligned Copper Oxide Passivation Layer — A Study on the Reliability Effect. MRS Advances, 2020, 5, 2827-2836.	0.9	1
23	Electromigration Study of Plasma Etched Copper Lines with Copper Oxide Capping Layers. ECS Transactions, 2020, 97, 51-60.	0.5	2
24	Si Wafer Dopant Concentration Effect on Light Emission of Solid State Incandescent Light Emitting Devices. ECS Journal of Solid State Science and Technology, 2020, 9, 036004.	1.8	1
25	Study of Electrothermal Characteristics and Emitted Light Characteristics of SSI-LED. ECS Journal of Solid State Science and Technology, 2020, 9, 065017.	1.8	2
26	Metal Capping Layer Effects on Electromigration Failure Phenomena of Plasma Etched Copper Lines. ECS Journal of Solid State Science and Technology, 2020, 9, 104009.	1.8	1
27	Influence of Vertical and Radial Distances of Nano-Resistors in SSI-LEDs on Light Intensity Distributions. ECS Transactions, 2020, 98, 163-170.	0.5	0
28	Copper Oxide Passivation Effect on Electromigration Lifetime of Plasma Etched Copper Lines. ECS Transactions, 2020, 98, 99-105.	0.5	1
29	(Invited) UV and Gate Stress Induced Defects in Amorphous Indium Gallium Zinc Oxide Thin Film Transistors and Self-Repair. ECS Transactions, 2020, 98, 39-46.	0.5	0
30	(Invited) UV and Gate Stress Induced Defects in Amorphous Indium Gallium Zinc Oxide Thin Film Transistors and Self-Repair. ECS Meeting Abstracts, 2020, MA2020-02, 1917-1917.	0.0	0
31	Influence of Vertical and Radial Distances of Nano-Resistors in SSI-LEDs on Light Intensity Distributions. ECS Meeting Abstracts, 2020, MA2020-02, 1965-1965.	0.0	0
32	Copper Oxide Passivation Effect on Electromigration Lifetime of Plasma Etched Copper Lines. ECS Meeting Abstracts, 2020, MA2020-02, 1383-1383.	0.0	0
33	Welcome Remarks - H03: Thin Film Transistors 15 (TFT 15). ECS Meeting Abstracts, 2020, MA2020-02, Open-Open.	0.0	0
34	Amorphous IGZO TFTs with Low Electrical Hysteresis By Using Two-Photomask Process. ECS Meeting Abstracts, 2020, MA2020-02, 1927-1927.	0.0	0
35	Molybdenum Capping Layer Effect on Electromigration Failure of Plasma Etched Copper Lines. ECS Transactions, 2019, 92, 39-46.	0.5	1
36	Capping Layer Effect on Lifetime of Plasma Etched Copper Lines. ECS Transactions, 2019, 89, 87-92.	0.5	4

#	Article	IF	CITATIONS
37	Lifetime of Plasma Etched Copper Lines. ECS Transactions, 2019, 90, 65-72.	0.5	4
38	Auxiliary structure of nano-pinnacle prepared on silicon substrate: Improving the emission intensity by 9 times in SSI-LEDs. Materials Science in Semiconductor Processing, 2019, 93, 226-230.	4.0	1
39	Communication—Co-Planar Structured Nano-Resistor Devices. ECS Journal of Solid State Science and Technology, 2019, 8, Q223-Q225.	1.8	1
40	Line Width and Capping Layer Effects on Electromigration Failure of Plasma Etched Copper Lines. ECS Transactions, 2019, 92, 9-16.	0.5	4
41	Electrical properties of nano-resistors made from the Zr-doped HfO ₂ high- <i>k</i> dielectric film. Journal Physics D: Applied Physics, 2018, 51, 09LT02.	2.8	4
42	Post Deposition Annealing Atmosphere Effect on Performance of Solid State Incandescent Light Emitting Device. ECS Journal of Solid State Science and Technology, 2018, 7, R3023-R3029.	1.8	1
43	From the President: Globalization Starting from Science. Electrochemical Society Interface, 2018, 27, 7-7.	0.4	0
44	Progress of Thin Film Transistor Technology. , 2018, , .		2
45	Electromigration of Plasma Etched Copper Lines of Various Widths and Lengths. ECS Transactions, 2018, 86, 41-47.	0.5	5
46	Plasma-Based Copper Etch Process and Reliability. ECS Transactions, 2018, 85, 165-170.	0.5	1
47	Memory Functions of Cadmium Sulfide Embedded Zr-Doped HfO ₂ High-k Dielectrics. ECS Journal of Solid State Science and Technology, 2018, 7, Q97-Q103.	1.8	2
48	From the President: Past Performance Is No Guarantee of Future Results, but 116 Years of Continuous Success Is a Sign of a Great Future. Electrochemical Society Interface, 2018, 27, 7-7.	0.4	0
49	Influence of pin Amorphous Silicon Stack Deposition Sequence on Solar Cell Performance and Degradation. ECS Journal of Solid State Science and Technology, 2017, 6, Q29-Q33.	1.8	5
50	Narrowing of Broad Band Light Emitted from a SSI-LED. ECS Transactions, 2017, 75, 17-22.	0.5	1
51	Light Sensing of a-Si:H p-i-n DiodeMechanism of Asymmetric Charge Carrier Transfer. , 2017, 1, 1-4.		1
52	Mechanism of <i>a</i> -IGZO TFT device deterioration—illumination light wavelength and substrate temperature effects. Journal Physics D: Applied Physics, 2017, 50, 42LT02.	2.8	11
53	Resistivity and Barrier Height of Nano-Resistors Made from Zr-Doped HfO 2 High- K Dielectric on Si Wafer. ECS Transactions, 2017, 77, 63-68.	0.5	3
54	Failure Mechanism of Nano-Resistor Devices. ECS Transactions, 2017, 77, 79-83.	0.5	5

#	Article	IF	CITATIONS
55	Communication—Filtration of Light Emitted from Solid State Incandescent Light Emitting Devices. ECS Journal of Solid State Science and Technology, 2017, 6, Q39-Q41.	1.8	6
56	Temperature Effects on Charge Storage and Transfer of Nanocrystalline CdSe Embedded Zr-Doped HfO2MOS Memory Device. ECS Journal of Solid State Science and Technology, 2016, 5, Q231-Q238.	1.8	6
57	Temperature Effect on Dielectric Breakdown and Charges Retention of Nanocrystalline Cadmium Selenide Embedded Zr-Doped HfO2 High- \${k}\$ Dielectric Thin Film. IEEE Transactions on Device and Materials Reliability, 2016, 16, 561-569.	2.0	7
58	Light Emission Enhancement by Embedding Nanocrystalline Cadmium Selenide in Amorphous ZrHfO High-k Dielectric Thin Film Deposited on Silicon Wafer. ECS Journal of Solid State Science and Technology, 2016, 5, Q75-Q80.	1.8	2
59	Solid State Incandescent Light Emitting Device Made of WOx Embedded Zr-Doped HfO2 High-k Stack on Si. ECS Transactions, 2015, 66, 223-228.	0.5	3
60	Principles and possible system-on-wafer applications of SSI-LEDs. , 2015, , .		0
61	Light emission from conductive paths in nanocrystalline CdSe embedded Zr-doped HfO2 high- <i>k</i> stack. Applied Physics Letters, 2015, 106, .	3.3	20
62	A Solid-State Thin-Film Incandescent Light-Emitting Device. IEEE Transactions on Electron Devices, 2015, 62, 3536-3540.	3.0	3
63	High-performance organic–inorganic hybrid optocouplers based on organic light-emitting diodes and a-Si:H photodiodes. Sensors and Actuators A: Physical, 2015, 236, 364-368.	4.1	3
64	Introduction to the Focus Issue on Oxide Thin Film Transistors. ECS Journal of Solid State Science and Technology, 2014, 3, Y5-Y5.	1.8	1
65	White light emission from ultrathin tungsten metal oxide film. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, .	1.2	11
66	Nonvolatile memory devices with AlOx embedded Zr-doped HfO2 high-k gate dielectric stack. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 03D116.	1.2	17
67	P ⁺ layer effects on a-Si:H solar cell performance. , 2014, , .		1
68	Memory functions of nanocrystalline cadmium selenide embedded ZrHfO high-kdielectric stack. Journal of Applied Physics, 2014, 115, 084113.	2.5	37
69	Factors Affecting Light Emission from Solid State Incandescent Light Emitting Devices with Sputter Deposited Zr-Doped HfO ₂ Thin Films. ECS Journal of Solid State Science and Technology, 2014, 3, Q182-Q189.	1.8	15
70	Post Deposition Annealing Temperature Effect on White-light Emitting of Sputter Deposited Zr-doped HfO2 Thin Film. Materials Research Society Symposia Proceedings, 2014, 1698, 65.	0.1	1
71	A solid state thin film incandescent light emitting device. , 2014, , .		1
72	Nonvolatile memories based on AlOx embedded ZrHfO high-k gate dielectric. Materials Research Society Symposia Proceedings, 2014, 1691, 37.	0.1	2

#	Article	IF	CITATIONS
73	Bayesian Analysis for Accelerated Life Tests Using a Dirichlet Process Weibull Mixture Model. IEEE Transactions on Reliability, 2014, 63, 58-67.	4.6	12
74	Improvement of zirconium-doped hafnium oxide high- <i>k</i> dielectric properties by adding molybdenum. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, .	1.2	10
75	Micro light emitting device prepared from sputter deposited thin hafnium oxide film. Solid-State Electronics, 2013, 89, 120-123.	1.4	23
76	A light emitting device made from thin zirconium-doped hafnium oxide high- <i>k</i> dielectric film with or without an embedded nanocrystal layer. Applied Physics Letters, 2013, 102, .	3.3	29
77	Radial Growth Model for Conical Nanobridge in Resistive Switching Memory Devices. Materials Research Society Symposia Proceedings, 2013, 1562, 1.	0.1	1
78	Emission spectra study of plasma enhanced chemical vapor deposition of intrinsic, n+, and p+ amorphous silicon thin films. Materials Research Society Symposia Proceedings, 2013, 1536, 133-138.	0.1	0
79	Exposure Light Wavelength Effects on Charge Trapping and Detrapping of nc-MoOx Embedded ZrHfO High-k Stack. Materials Research Society Symposia Proceedings, 2013, 1562, 1.	0.1	0
80	Nonvolatile memory MOS capacitors made of CdSe embedded ZrHfO high-k gate dielectric. Materials Research Society Symposia Proceedings, 2013, 1562, 1.	0.1	0
81	Temperature Effects on Nanocrystalline Molybdenum Oxide Embedded ZrHfO High- <i>k</i> Nonvolatile Memory Functions. ECS Journal of Solid State Science and Technology, 2013, 2, Q16-Q22.	1.8	15
82	Charge Trapping and Detrapping in nc-RuO Embedded ZrHfO High-k Thin Film for Nonvolatile Memory Applications. Journal of the Electrochemical Society, 2012, 159, H214-H219.	2.9	9
83	Plasma Etching of Copper Thin Film over a Dielectric Step and Electromigration Failure Mechanism. Materials Research Society Symposia Proceedings, 2012, 1428, 13.	0.1	1
84	Light Wavelength Effects on Performance of a-Si:H PIN Photodiodes. Materials Research Society Symposia Proceedings, 2012, 1426, 199-204.	0.1	0
85	Process effects of copper film over a step etched with a plasma-based process. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, 021204.	1.2	2
86	Electromigration study of copper lines on steps prepared by a plasma-based etch process. Journal of Applied Physics, 2012, 111, 064909.	2.5	3
87	Polycrystalline Silicon Thin Film Formed By Multiple Pulsed Rapid Thermal Annealing – Intrinsic a-Si Film Thickness Effect. Materials Research Society Symposia Proceedings, 2012, 1426, 269-274.	0.1	1
88	Non-parametric Bayesian modeling of hazard rate with a change point for nanoelectronic devices. IIE Transactions, 2012, 44, 496-506.	2.1	6
89	Memory Functions of Molybdenum Oxide Nanodots-Embedded ZrHfO High-k. Electrochemical and Solid-State Letters, 2012, 15, H192.	2.2	6
90	Nonvolatile Memory Characteristics of Nanocrystalline Molybdenum Oxide Embedded High-k Film - Device Performance and Light Wavelength Effects. Materials Research Society Symposia Proceedings, 2012, 1430, 82.	0.1	4

#	Article	IF	CITATIONS
91	Memory Functions of Nanocrystalline ITO Embedded Zirconium-Doped Hafnium Oxide High- <i>k</i> Capacitor with ITO Gate. Journal of the Electrochemical Society, 2012, 159, H595-H598.	2.9	2
92	Crystallization of a-Si thin film using an ultra thin n ⁺ poly-Si seed layer for solar cell applications. , 2012, , .		0
93	Light Effects on Charge Trapping and Detrapping of nc-ZnO Embedded ZrHfO High-k MOS Nonvolatile Memories. ECS Transactions, 2011, 41, 93-100.	0.5	4
94	Poly-Si Thin Film Formation Using a Novel Low Thermal Budget Process. Materials Research Society Symposia Proceedings, 2011, 1321, 167.	0.1	3
95	Single- and Dual-Layer Nanocrystalline Indium Tin Oxide Embedded ZrHfO High-k Films for Nonvolatile Memories – Material and Electrical Properties. Journal of the Electrochemical Society, 2011, 158, H756.	2.9	12
96	Temperature Influence on Nanocrystals Embedded High-k Nonvolatile C–V Characteristics. Electrochemical and Solid-State Letters, 2011, 14, H50.	2.2	10
97	Status Review of Nanocrystals Embedded High-K Nonvolatile Memories. ECS Transactions, 2011, 35, 13-31.	0.5	6
98	Temperature Effects on Charge Transfer Mechanisms of nc-ITO Embedded ZrHfO High- <i>k</i> Nonvolatile Memory Devices. Materials Research Society Symposia Proceedings, 2011, 1337, 123.	0.1	3
99	(Invited) Nonvolatile Memories for Nano and Giga Electronics. ECS Transactions, 2011, 37, 157-166.	0.5	0
100	Material and Electrical Properties of Hole-Trapping Memory Capacitors Composed of nc-ITO Embedded ZrHfO High-k Films. ECS Transactions, 2011, 35, 249-255.	0.5	4
101	Nanocrystalline ruthenium oxide embedded zirconium-doped hafnium oxide high-k nonvolatile memories. Journal of Applied Physics, 2011, 110, 024101.	2.5	31
102	Ruthenium Modified Zr-Doped HfO2 High-k Thin Films with Low Equivalent Oxide Thickness. Journal of the Electrochemical Society, 2011, 158, G162.	2.9	13
103	Hole-Trapping Mechanism and SILC of Dual-Layer nc-ITO Embedded ZrHfO High-k Nonvolatile Memories. ECS Transactions, 2010, 28, 269-276.	0.5	1
104	Bayesian Analysis of Hazard Rate, Change Point, and Cost-Optimal Burn-In Time for Electronic Devices. IEEE Transactions on Reliability, 2010, 59, 132-138.	4.6	27
105	Charge Trapping Sites in nc-RuO Embedded ZrHfO High-k Nonvolatile Memories. Materials Research Society Symposia Proceedings, 2010, 1250, 1.	0.1	6
106	Hysteresis of Transfer Characteristics of Floating-Gate a-Si:H Thin Film Transistor Nonvolatile Memories. Electrochemical and Solid-State Letters, 2010, 13, H460.	2.2	2
107	Nonvolatile Memories with Dual-Layer Nanocrystalline ZnO Embedded Zr-Doped HfO[sub 2] High-k Dielectric. Electrochemical and Solid-State Letters, 2010, 13, H83.	2.2	20
108	Influence of Embedded a-Si:H Layer Location on Floating-gate a-Si:H TFT Memory Functions. Materials Research Society Symposia Proceedings, 2010, 1245, 1.	0.1	0

#	Article	IF	CITATIONS
109	Charge detrapping and dielectric breakdown of nanocrystalline zinc oxide embedded zirconium-doped hafnium oxide high-k dielectrics for nonvolatile memories. Applied Physics Letters, 2010, 96, 192106.	3.3	11
110	A novel low thermal budget thin-film polysilicon fabrication process for large-area, high-throughput solar cell production. , 2010, , .		2
111	Single and Dual nc-ITO and nc-ZnO Embedded ZrHfO High-k Nonvolatile Memories. ECS Transactions, 2009, 19, 81-87.	0.5	0
112	Reliability of nc-ZnO Embedded ZrHfO High-kNonvolatile Memory Devices Stressed at High Temperatures. Materials Research Society Symposia Proceedings, 2009, 1160, 1.	0.1	3
113	A-Si:H TFT Nonvolatile Memories and Copper Interconnect for Rigid and Flexible Electronics. ECS Transactions, 2009, 22, 183-190.	0.5	0
114	Electromigration of Flat and Bent Copper Lines Patterned with a Plasma-Based Etch Process. Journal of the Electrochemical Society, 2009, 156, H579.	2.9	8
115	Temperature Influence on Nanocrystals Embedded High-k Nonvolatile Memory Characteristics. ECS Transactions, 2009, 19, 41-47.	0.5	0
116	Failure Analysis of Single and Dual nc-ITO Embedded ZrHfO High-k Nonvolatile Memories. ECS Transactions, 2009, 25, 457-464.	0.5	4
117	Mechanism of Charge Storage in nc-RuO Embedded ZrHfO High-k Films. ECS Transactions, 2009, 16, 309-316.	0.5	2
118	Charge and Discharge of Floating-Gate Amorphous Silicon Thin Film Transistor Nonvolatile Memories. Journal of the Korean Physical Society, 2009, 54, 409-414.	0.7	2
119	Failure analysis of nanocrystals embedded high-k dielectrics for nonvolatile memories. , 2008, , .		1
120	Floating-Gate a-Si:H TFT Nonvolatile Memories. Materials Research Society Symposia Proceedings, 2008, 1066, 1.	0.1	1
121	Thin-Film Transistor and Ultra-Large Scale Integrated Circuit: Competition or Collaboration. Japanese Journal of Applied Physics, 2008, 47, 1845.	1.5	48
122	Electromigration of Cu Interconnect Lines Prepared by a Plasma-based Etch Process. Materials Research Society Symposia Proceedings, 2008, 1079, 1.	0.1	0
123	Nanocrystalline Zinc-Oxide-Embedded Zirconium-Doped Hafnium Oxide for Nonvolatile Memories. Journal of the Electrochemical Society, 2008, 155, H386.	2.9	14
124	Additive-Gas Effects on Cl[sub 2] Plasma-Based Copper-Etch Process and Sidewall Attack. Journal of the Electrochemical Society, 2008, 155, H97.	2.9	11
125	Embedding of Nanocrystalline Ruthenium in ZrHfO High-k Film for Nonvolatile Memories. ECS Transactions, 2008, 13, 465-470.	0.5	6
126	Relaxation Behavior and Breakdown Mechanisms of Nanocrystals Embedded Zr-doped HfO2 High-k Thin Films for Nonvolatile Memories. Materials Research Society Symposia Proceedings, 2008, 1071, 1.	0.1	2

#	Article	IF	CITATIONS
127	Grain-Size Effect on a Plasma-Based Copper Etch Process. Journal of the Electrochemical Society, 2008, 155, H432.	2.9	7
128	Surface Modification of Gel-Free Microchannel Surface Electrophoresis Device for DNA Identification. Japanese Journal of Applied Physics, 2008, 47, 2300-2305.	1.5	6
129	Dielectric Breakdown and Charge Trapping of Ultrathin ZrHfO/SiON High-kGate Stacks. Japanese Journal of Applied Physics, 2008, 47, 1639-1641.	1.5	9
130	Reliability of a-Si:H TFTs and Copper Interconnect Lines for Flexible Electronics. ECS Transactions, 2008, 16, 345-351.	0.5	0
131	Memory Functions of Nanocrystalline Indium Tin Oxide Embedded Zirconium-Doped Hafnium Oxide MOS Capacitors. Journal of the Electrochemical Society, 2007, 154, H887.	2.9	13
132	Reactive Ion Etching of Titanium Tungsten Thin Films. Journal of the Electrochemical Society, 2007, 154, H653.	2.9	7
133	Charge trapping of ultra-thin ZrHfO <inf>x</inf> /RuO <inf>x</inf> /ZrHfO <inf>x</inf> high-k stacks. , 2007, , .		0
134	ULSIC vs. TFT - What Can They Learn from Each Other?. ECS Transactions, 2007, 8, 45-50.	0.5	0
135	Radiation Exposure Effect on Amorphous Silicon Thin Film Transistors. ECS Transactions, 2007, 8, 261-266.	0.5	Ο
136	Nonvolatile Memories Based on Nanocrystalline Zinc Oxide Embedded Zirconium-doped Hafnium Oxide Thin Films. ECS Transactions, 2007, 11, 509-518.	0.5	5
137	Amorphous Silicon Based TFT and MIS Nonvolatile Memories. Materials Research Society Symposia Proceedings, 2007, 989, 3.	0.1	5
138	Zirconium-Doped Hafnium Oxide High-k Dielectrics with Subnanometer Equivalent Oxide Thickness by Reactive Sputtering. Electrochemical and Solid-State Letters, 2007, 10, H199.	2.2	40
139	Memory Functions of Amorphous Silicon-Based Floating Gate MIS Capacitors. Electrochemical and Solid-State Letters, 2007, 10, H232.	2.2	3
140	Influence of Ru Dopant on the Dielectric Properties of Zr-doped HfO2 High-k Thin Film. ECS Transactions, 2007, 6, 121-127.	0.5	1
141	ELECTRONICS AND PHOTONICS DIVISION AWARD ADDRESS: Thin Film Transistor and ULSIC Technologies - Parallel or Crossing?. ECS Transactions, 2007, 6, 121-132.	0.5	Ο
142	ELECTRONICS AND PHOTONICS DIVISION AWARD ADDRESS: Thin Film Transistor and ULSIC Technologies - Parallel or Crossing?. ECS Meeting Abstracts, 2007, , .	0.0	0
143	A Novel Hole-Based Memory Device Fabricated from Nano ITO Embedded High-k Thin Films. , 2006, , .		0
144	Charge trapping and dielectric relaxation in connection with breakdown of high-k gate dielectric stacks. Applied Physics Letters, 2006, 88, 202904.	3.3	15

#	Article	IF	CITATIONS
145	Electrical reliability aspects of HfO2 high-k gate dielectrics with TaN metal gate electrodes under constant voltage stress. Microelectronics Reliability, 2006, 46, 69-76.	1.7	46
146	Nanocrystalline Silicon Embedded Zirconium-Doped Hafnium Oxide High-kMemory Device. Japanese Journal of Applied Physics, 2006, 45, L901-L903.	1.5	24
147	Bulk and Interface Material and Electrical Properties of Hafnium-Doped Tantalum Oxide High-K Films. ECS Transactions, 2006, 1, 177-183.	0.5	0
148	Nonvolatile Amorphous Silicon Thin Film Transistor Memories with the a-Si:H Embedded Gate Dielectric Structure. ECS Transactions, 2006, 3, 333-339.	0.5	2
149	Control of Edge Shape, Sidewall Profile, and Sidewall Roughness of the Plasma Etched Copper. ECS Transactions, 2006, 1, 169-176.	0.5	0
150	Integration of an Amorphous Silicon Thin Film Transistor with a Microchannel Electrophoresis for Protein Identification. Electrochemical and Solid-State Letters, 2006, 9, J21.	2.2	4
151	Physical and electrical properties of Ta–N, Mo–N, and W–N electrodes on HfO[sub 2] high-k gate dielectric. Journal of Vacuum Science & Technology B, 2006, 24, 349.	1.3	17
152	Nonvolatile hydrogenated-amorphous-silicon thin-film-transistor memory devices. Applied Physics Letters, 2006, 89, 173503.	3.3	28
153	Breakdown phenomena of zirconium-doped hafnium oxide high-k stack with an inserted interface layer. Applied Physics Letters, 2006, 89, 072901.	3.3	24
154	Sub 2 nm Thick Zirconium Doped Hafnium Oxide High-K Gate Dielectrics. ECS Transactions, 2006, 1, 447-454.	0.5	39
155	Hafnium-Doped Tantalum Oxide High-k Gate Dielectrics. Journal of the Electrochemical Society, 2006, 153, G410.	2.9	45
156	Mixed Oxide High-k Gate Dielectrics - Interface Layer Structure, Breakdown Mechanism, and Memories. ECS Transactions, 2006, 3, 253-263.	0.5	17
157	Indium-Tin-Oxide Embedded in Zirconium-Doped Hafnium Oxide High-k Dielectric Films for Hole-Based Nonvolatile Memories. ECS Transactions, 2006, 3, 193-201.	0.5	0
158	Influence of a 5â€,AÌŠ Tantalum Nitride Interface Layer on Dielectric Properties of Zirconium-Doped Tantalum Oxide High-k Films. Journal of the Electrochemical Society, 2005, 152, G617.	2.9	7
159	Zirconium-Doped Tantalum Oxide Gate Dielectric Films Integrated with Molybdenum, Molybdenum Nitride, and Tungsten Nitride Gate Electrodes. Journal of the Electrochemical Society, 2005, 152, G643.	2.9	15
160	Hafnium-doped tantalum oxide high-k dielectrics with sub-2 nm equivalent oxide thickness. Applied Physics Letters, 2005, 87, 232906.	3.3	47
161	Suppression of Crystallization of Tantalum Oxide Thin Film by Doping with Zirconium. Electrochemical and Solid-State Letters, 2005, 8, G27.	2.2	37
162	The p-channel a-Si:H Thin Film Transistor with Plasma Etched Copper Electrodes. Materials Research Society Symposia Proceedings, 2004, 808, 119.	0.1	0

#	Article	IF	CITATIONS
163	Electrical and Physical Characterization of Zirconium-Doped Tantalum Oxide Thin Films. Journal of the Electrochemical Society, 2004, 151, F59.	2.9	54
164	Fabrication and Characterization of Hydrogenated Amorphous Silicon Bipolar Thin Film Transistor (B-TFT). Materials Research Society Symposia Proceedings, 2004, 808, 287.	0.1	1
165	Effects of the TaNx interface layer on doped tantalum oxide high-k films. Vacuum, 2004, 74, 539-547.	3.5	8
166	A new, room-temperature, high-rate plasma-based copper etch process. Vacuum, 2004, 74, 473-477.	3.5	18
167	Hydrogen bromide plasma–copper reaction in a new copper etching process. Thin Solid Films, 2004, 457, 326-332.	1.8	27
168	Non-LCD Applications of a-Si:H TFTs. , 2004, , 485-505.		3
169	a-Si:H TFT Structures. , 2004, , 183-202.		4
170	Deposition of Dielectric Thin Films for a-Si:H TFT. , 2004, , 241-271.		4
171	Deposition of Intrinsic and Doped Semiconductor Thin Films for a-Si:H TFT. , 2004, , 203-239.		0
172	Plasma Etching in a-Si:H TFT Array Fabrication. , 2004, , 273-312.		1
173	Tantalum Nitride Interface Layer Influence on Dielectric Properties of Hafnium Doped Tantalum Oxide High Dielectric Constant Thin Films. Japanese Journal of Applied Physics, 2003, 42, L769-L771.	1.5	17
174	Plasma Hydrogenation – A New Method of Reducing the k Value of the Low k Polyimide Film. Materials Research Society Symposia Proceedings, 2003, 766, 8161.	0.1	1
175	Thin-Film Transistors. , 2003, , 723-733.		7
176	A New Hydrogen Chloride Plasma-Based Copper Etching Process. Japanese Journal of Applied Physics, 2002, 41, 7345-7352.	1.5	15
177	Plasma-enhanced chemical vapor deposition of silicon nitride below 250°C. Vacuum, 2002, 66, 299-303.	3.5	16
178	Microchannel Electrophoresis Device for Separation and In Situ Detection of Proteins. Electrochemical and Solid-State Letters, 2001, 4, H23.	2.2	6
179	<title>New microchannel device for protein separation and detection</title> ., 2001, , .		1
180	Chlorine Plasma/Copper Reaction in a New Copper Dry Etching Process. Journal of the Electrochemical Society, 2001, 148, G524.	2.9	41

#	Article	IF	CITATIONS
181	Room-temperature copper etching based on a plasma–copper reaction. Applied Physics Letters, 2001, 78, 1002-1004.	3.3	51
182	Some issues on hydrogen and hydrogenation of plasma enhanced chemical vapor deposited films in a-Si:H thin-film transistors. Vacuum, 2000, 59, 484-491.	3.5	8
183	A Novel Plasma-Based Copper Dry Etching Method. Japanese Journal of Applied Physics, 2000, 39, L188-L190.	1.5	33
184	Plasma enhanced chemical vapor deposited silicon nitride as a gate dielectric film for amorphous silicon thin film transistors—a critical review. Vacuum, 1998, 51, 741-745.	3.5	36
185	Reactive ion etching of indium tin oxide by SiCl4-based plasmas—substrate temperature effect. Vacuum, 1998, 51, 777-779.	3.5	10
186	Doping gas effects on plasma enhanced chemical vapor deposition on heavily phosphorus-doped n+silicon film. Applied Physics Letters, 1997, 71, 2821-2823.	3.3	12
187	High Temperature Reactive Ion Etching of Indiumâ€Tin Oxide. Journal of the Electrochemical Society, 1997, 144, 1411-1416.	2.9	4
188	Horizontally Redundant, Splitâ€Gate aâ€Si:H Thin Film Transistors. Journal of the Electrochemical Society, 1996, 143, 2680-2682.	2.9	6
189	Nonphotosensitive, Vertically Redundant Two hannel aâ€Si:H Thin Film Transistor. Journal of the Electrochemical Society, 1996, 143, 1469-1471.	2.9	6
190	Polycrystalline silicon formation by pulsed rapid thermal annealing of amorphous silicon. Applied Physics Letters, 1996, 69, 1092-1094.	3.3	41
191	Thin Film Transistors with Layered a-Si:H Structure. Materials Research Society Symposia Proceedings, 1995, 377, 701.	0.1	3
192	Thinâ€film transistors with multistep deposited amorphous silicon layers. Applied Physics Letters, 1995, 67, 2173-2175.	3.3	11
193	Singleâ€gate multichannel amorphous silicon thinâ€film transistors. Applied Physics Letters, 1995, 67, 3174-3176.	3.3	5
194	Plasma Etching and Deposition for aâ€ s i:H Thin Film Transistors. Journal of the Electrochemical Society, 1995, 142, 2486-2507.	2.9	39
195	PECVD Silicon Nitride as a Gate Dielectric for Amorphous Silicon Thin Film Transistor: Process and Device Performance. Journal of the Electrochemical Society, 1995, 142, 186-190.	2.9	53
196	Deposition and Etching Mechanisms in Plasma Thin Film Processes. , 1995, , 581-593.		1
197	Thin Film Transistors with Graded SiN x Gate Dielectrics. Journal of the Electrochemical Society, 1994, 141, 1061-1065.	2.9	18
198	Reactive Ion Etching of Sputter Deposited Tantalum with CF4, CF3Cl, and CHF3. Japanese Journal of Applied Physics, 1993, 32, 179-185.	1.5	17

#	Article	IF	CITATIONS
199	Plasma Swelling of Photoresist. Japanese Journal of Applied Physics, 1993, 32, L126-L128.	1.5	4
200	Etch mechanism in the low refractive index silicon nitride plasmaâ€enhanced chemical vapor deposition process. Applied Physics Letters, 1993, 63, 144-146.	3.3	35
201	Reactive Ion Etching Processes for Amorphous Germanium Alloys. Materials Research Society Symposia Proceedings, 1993, 316, 1041.	0.1	1
202	Reactive Ion Etching of Sputter Deposited Tantalum Oxide and Its Etch Selectivity to Tantalum. Journal of the Electrochemical Society, 1992, 139, 579-583.	2.9	60
203	Reactive ion etch damages in inverted, trilayer thinâ€film transistor. Applied Physics Letters, 1992, 61, 2790-2792.	3.3	27
204	A Selfâ€aligned, Trilayer, aâ€5i:H Thin Film Transistor Prepared from Two Photomasks. Journal of the Electrochemical Society, 1992, 139, 1199-1204.	2.9	19
205	Large Area Plasma Enhanced Chemical Vapor Deposition of Nonstoichiometric Silicon Nitride. Materials Research Society Symposia Proceedings, 1992, 282, 623.	0.1	9
206	<title>New thin-film transistor structure and its processing method for liquid-crystal displays</title> . , 1991, 1456, 288.		4
207	A New Process Using Two Photoâ€Masks to Prepare Trilayer Thin Film Transistors. Journal of the Electrochemical Society, 1991, 138, 637-638.	2.9	12
208	The Role of Oxygen In the CF2Cl2 Reactive Ion Etching of Pecvd Films. Materials Research Society Symposia Proceedings, 1991, 223, 249.	0.1	5
209	Characterization of Indium Tin Oxide and Reactive Ion Etched Indium Tin Oxide Surfaces. Japanese Journal of Applied Physics, 1990, 29, 2243-2246.	1.5	20
210	Reactive ion etching of plasma enhanced chemical vapor deposition amorphous silicon and silicon nitride: Feeding gas effects. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1990, 8, 1702-1705.	2.1	17
211	Reactive Ion Etching of PECVD Amorphous Silicon and Silicon Nitride Thin Films with Fluorocarbon Gases. Journal of the Electrochemical Society, 1990, 137, 1235-1239.	2.9	35
212	Slope control of molybdenum lines etched with reactive ion etching. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1990, 8, 1529-1532.	2.1	12
213	Factors Affecting the Molybdenum Line Slope by Reactive Ion Etching. Journal of the Electrochemical Society, 1990, 137, 1907-1911.	2.9	16
214	Factors Affecting Reactive Ion Etching Of Corning 7059 Glass. , 1989, 1037, 103.		4
215	Thin Film Technologies In Active Matrix Addressing System Of LCDs. Proceedings of SPIE, 1989, , .	0.8	10
216	Reactive Ion Etching Of A Multicomponent Glass Substrate. Proceedings of SPIE, 1988, , .	0.8	2

#	Article	IF	CITATIONS
217	Use of Adsorbents for Recovery of Acetic Acid from Aqueous Solutions Part II—Factors Governing Selectivity. Separation and Purification Reviews, 1987, 16, 65-89.	0.8	6
218	Use of Adsorbents for Recovery of Acetic Acid from Aqueous Solutions Part l—Factors Governing Capacity. Separation and Purification Reviews, 1987, 16, 31-64.	0.8	19
219	Use of Adsorbents for Recovery of Acetic Acid from Aqueous Solutions Part Ill—Solvent Regeneration. Separation and Purification Reviews, 1987, 16, 91-102.	0.8	6
220	Acetic Acid Extraction by Solvent Membrane. Separation Science and Technology, 1983, 18, 421-440.	2.5	32
221	Facing the headaches of early failures: A state-of-the-art review of burn-in decisions. Proceedings of the IEEE, 1983, 71, 1257-1266.	21.3	126
222	A new microchannel device for proteins separation and identification. , 0, , .		1
223	Electrical and material characteristics of the sub 5 nm hafnium doped tantalum oxide high k film. , 0, , .		0
224	A Novel Hole-Based Memory Device Fabricated from Nano ITO Embedded High-k Thin Films. , 0, , .		0
225	Plasma oxidation as an effective method in etching copper interconnect lines at room-temperature. Japanese Journal of Applied Physics, 0, , .	1.5	1
226	Gate dielectric material and process effects on distribution pattern of nano-resistors in solid-state incandescent light emitting devices. MRS Advances, 0, , .	0.9	0