Sahba Mobini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8501010/publications.pdf Version: 2024-02-01

SAHRA MORINI

#	Article	IF	CITATIONS
1	Combining electrical stimulation and tissue engineering to treat large bone defects in a rat model. Scientific Reports, 2018, 8, 6307.	1.6	134
2	Tunable methacrylated hyaluronic acidâ€based hydrogels as scaffolds for soft tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2020, 108, 279-291.	2.1	97
3	<i>In vitro</i> effect of direct current electrical stimulation on rat mesenchymal stem cells. PeerJ, 2017, 5, e2821.	0.9	80
4	Fabrication and characterization of regenerated silk scaffolds reinforced with natural silk fibers for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2392-2404.	2.1	77
5	Direct current electrical stimulation chamber for treating cells in vitro. BioTechniques, 2016, 60, 95-98.	0.8	67
6	Decellularized tissues as platforms for in vitro modeling of healthy and diseased tissues. Acta Biomaterialia, 2020, 111, 1-19.	4.1	60
7	Direct electrical stimulation enhances osteogenesis by inducing Bmp2 and Spp1 expressions from macrophages and preosteoblasts. Biotechnology and Bioengineering, 2019, 116, 3421-3432.	1.7	59
8	Tissueâ€Engineered Peripheral Nerve Interfaces. Advanced Functional Materials, 2018, 28, 1701713.	7.8	53
9	Advances in exÂvivo models and lab-on-a-chip devices for neural tissue engineering. Biomaterials, 2019, 198, 146-166.	5.7	49
10	Title is missing!. Journal of Medical and Biological Engineering, 2013, 33, 207.	1.0	46
11	Recent advances in strategies for peripheral nerve tissue engineering. Current Opinion in Biomedical Engineering, 2017, 4, 134-142.	1.8	45
12	Synthesis and characterisation of gelatin–nano hydroxyapatite composite scaffolds for bone tissue engineering. Advances in Applied Ceramics, 2008, 107, 4-8.	0.6	34
13	Fabrication and characterization of nano-fibrous bilayer composite for skin regeneration application. Methods, 2016, 99, 3-12.	1.9	34
14	Chondrogenic Differentiation of Menstrual Blood-Derived Stem Cells on Nanofibrous Scaffolds. Methods in Molecular Biology, 2013, 1058, 149-169.	0.4	28
15	Evaluation of menstrual blood stem cells seeded in biocompatible <i>Bombyx mori</i> silk fibroin scaffold for cardiac tissue engineering. Journal of Biomaterials Applications, 2014, 29, 199-208.	1.2	26
16	Comparative repair capacity of knee osteochondral defects using regenerated silk fiber scaffolds and fibrin glue with/without autologous chondrocytes during 36 weeks in rabbit model. Cell and Tissue Research, 2016, 364, 559-572.	1.5	21
17	Development of sheep primordial follicles encapsulated in alginate or in ovarian tissue in fresh and vitrified samples. Cryobiology, 2016, 72, 100-105.	0.3	20
18	Efficient Wound Healing Using a Synthetic Nanofibrous Bilayer Skin Substitute in Murine Model. Journal of Surgical Research, 2020, 245, 31-44.	0.8	20

Sahba Mobini

#	Article	IF	CITATIONS
19	Changes in the extracellular microenvironment and osteogenic responses of mesenchymal stem/stromal cells induced by in vitro direct electrical stimulation. Journal of Tissue Engineering, 2021, 12, 204173142097414.	2.3	20
20	Comparative evaluation of <i>inÂvivo</i> biocompatibility and biodegradability of regenerated silk scaffolds reinforced with/without natural silk fibers. Journal of Biomaterials Applications, 2016, 30, 793-809.	1.2	19
21	Effect of sintering temperature and cooling rate on the morphology, mechanical behavior and apatite-forming ability of a novel nanostructured magnesium calcium silicate scaffold prepared by a freeze casting method. Journal of Materials Science, 2014, 49, 1297-1305.	1.7	18
22	Construction and Use of an Electrical Stimulation Chamber for Enhancing Osteogenic Differentiation in Mesenchymal Stem/Stromal Cells In Vitro. Journal of Visualized Experiments, 2019, , .	0.2	17
23	Electrical Stimulation Changes Human Mesenchymal Stem Cells Orientation and Cytoskeleton Organization. Journal of Biomaterials and Tissue Engineering, 2017, 7, 829-833.	0.0	14
24	Microtopographical patterns promote different responses in fibroblasts and Schwann cells: A possible feature for neural implants. Journal of Biomedical Materials Research - Part A, 2021, 109, 64-76.	2.1	13
25	Impact of integrated gastrointestinal nematode management training for U.S. goat and sheep producers. Veterinary Parasitology, 2014, 200, 271-275.	0.7	12
26	Tissue Engineering andÂRegenerative Medicine in Iran: Current State of Research and Future Outlook. Molecular Biotechnology, 2015, 57, 589-605.	1.3	12
27	Bioelectric Potential in Next-Generation Organoids: Electrical Stimulation to Enhance 3D Structures of the Central Nervous System. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	8
28	Comparative effectiveness of three-dimensional scaffold, differentiation media and co-culture with native cardiomyocytes to trigger in vitro cardiogenic differentiation of menstrual blood and bone marrow stem cells. Biologicals, 2018, 54, 13-21.	0.5	6
29	Extracellular Matrix Disparities in an Nkx2-5 Mutant Mouse Model of Congenital Heart Disease. Frontiers in Cardiovascular Medicine, 2020, 7, 93.	1.1	6
30	Effects of Varied Stimulation Parameters on Adipose-Derived Stem Cell Response to Low-Level Electrical Fields. Annals of Biomedical Engineering, 2021, 49, 3401-3411.	1.3	6
31	Effects of nanostructuration on the electrochemical performance of metallic bioelectrodes. Nanoscale, 2022, 14, 3179-3190.	2.8	6
32	ROBUST AND SCALABLE TISSUE-ENGINEERINED ELECTRONIC NERVE INTERFACES (TEENI). , 2018, , .		3
33	Neural Interfaces: Tissueâ€Engineered Peripheral Nerve Interfaces (Adv. Funct. Mater. 12/2018). Advanced Functional Materials, 2018, 28, 1870076.	7.8	1