
Jonathan C Howard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8500853/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disruption of Toxoplasma gondii Parasitophorous Vacuoles by the Mouse p47-Resistance GTPases. PLoS Pathogens, 2005, 1, e24.	2.1	314
2	The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage. Genome Biology, 2005, 6, R92.	13.9	263
3	IDENTIFICATION OF MARROW-DERIVED AND THYMUS-DERIVED SMALL LYMPHOCYTES IN THE LYMPHOID TISSUE AND THORACIC DUCT LYMPH OF NORMAL RATS. Journal of Experimental Medicine, 1972, 135, 200-219.	4.2	262
4	Phosphorylation of Mouse Immunity-Related GTPase (IRG) Resistance Proteins Is an Evasion Strategy for Virulent Toxoplasma gondii. PLoS Biology, 2010, 8, e1000576.	2.6	259
5	Comparative Genomics of the Apicomplexan Parasites Toxoplasma gondii and Neospora caninum: Coccidia Differing in Host Range and Transmission Strategy. PLoS Pathogens, 2012, 8, e1002567.	2.1	206
6	Disruption of the Toxoplasma gondii Parasitophorous Vacuole by IFNÎ ³ -Inducible Immunity-Related GTPases (IRG Proteins) Triggers Necrotic Cell Death. PLoS Pathogens, 2009, 5, e1000288.	2.1	201
7	Coordinated loading of IRG resistance GTPases on to the Toxoplasma gondii parasitophorous vacuole. Cellular Microbiology, 2010, 12, 939-961.	1.1	184
8	THE LIFE-SPAN AND RECIRCULATION OF MARROW-DERIVED SMALL LYMPHOCYTES FROM THE RAT THORACIC DUCT. Journal of Experimental Medicine, 1972, 135, 185-199.	4.2	180
9	A Toxoplasma gondii Pseudokinase Inhibits Host IRG Resistance Proteins. PLoS Biology, 2012, 10, e1001358.	2.6	160
10	Regulatory interactions between IRG resistance GTPases in the cellular response to Toxoplasma gondii. EMBO Journal, 2008, 27, 2495-2509.	3.5	145
11	The IRG protein-based resistance mechanism in mice and its relation to virulence in Toxoplasma gondii. Current Opinion in Microbiology, 2011, 14, 414-421.	2.3	142
12	Monoclonal Antibodies as Tools to Analyze the Serological and Genetic Complexities of Major Transplantation Antigens. Immunological Reviews, 1979, 47, 139-174.	2.8	138
13	Virulent <i>Toxoplasma gondii</i> Evade Immunity-Related GTPase-Mediated Parasite Vacuole Disruption within Primed Macrophages. Journal of Immunology, 2009, 182, 3775-3781.	0.4	131
14	Mechanisms Regulating the Positioning of Mouse p47 Resistance GTPases LRG-47 and IIGP1 on Cellular Membranes: Retargeting to Plasma Membrane Induced by Phagocytosis. Journal of Immunology, 2004, 173, 2594-2606.	0.4	114
15	The Rat cim Effect: TAP Allele-Dependent Changes in a Class I MHC Anchor Motif and Evidence Against C-Terminal Trimming of Peptides in the ER. Immunity, 1996, 4, 159-165.	6.6	109
16	The immunity-related GTPases in mammals: a fast-evolving cell-autonomous resistance system against intracellular pathogens. Mammalian Genome, 2011, 22, 43-54.	1.0	106
17	Differential inductions of TNF-alpha and IGTP, IIGP by structurally diverse classic and non-classic lipopolysaccharides. Cellular Microbiology, 2006, 8, 401-413.	1.1	95
18	Death and Resurrection of the Human IRGM Gene. PLoS Genetics, 2009, 5, e1000403.	1.5	93

JONATHAN C HOWARD

#	Article	IF	CITATIONS
19	Balance of Irgm protein activities determines IFN-Î ³ -induced host defense. Journal of Leukocyte Biology, 2009, 85, 877-885.	1.5	91
20	The <i>Toxoplasma gondii</i> rhoptry protein ROP18 is an Irga6â€specific kinase and regulated by the dense granule protein GRA7. Cellular Microbiology, 2016, 18, 244-259.	1.1	91
21	Reciprocal virulence and resistance polymorphism in the relationship between Toxoplasma gondii and the house mouse. ELife, 2013, 2, e01298.	2.8	90
22	IIGP1, an Interferon-γ-inducible 47-kDa GTPase of the Mouse, Showing Cooperative Enzymatic Activity and GTP-dependent Multimerization. Journal of Biological Chemistry, 2003, 278, 29336-29343.	1.6	88
23	Supply and transport of peptides presented by class I MHC molecules. Current Opinion in Immunology, 1995, 7, 69-76.	2.4	87
24	Nucleotide binding by TAP mediates association with peptide and release of assembled MHC class I molecules. Current Biology, 1999, 9, 999-S1.	1.8	73
25	Immunity-related GTPase M (IRGM) Proteins Influence the Localization of Guanylate-binding Protein 2 (GBP2) by Modulating Macroautophagy. Journal of Biological Chemistry, 2011, 286, 30471-30480.	1.6	71
26	The IFN-Î ³ -Inducible GTPase, Irga6, Protects Mice against Toxoplasma gondii but Not against Plasmodium berghei and Some Other Intracellular Pathogens. PLoS ONE, 2011, 6, e20568.	1.1	68
27	The mechanism of synergistic complement-mediated lysis of rat red cells by monoclonal IgG antibodies. European Journal of Immunology, 1983, 13, 635-641.	1.6	65
28	A recombinant in the major histocompatibility complex of the rat. Nature, 1977, 266, 362-364.	13.7	61
29	The arginine-rich N-terminal domain of ROP18 is necessary for vacuole targeting and virulence of <i>Toxoplasma gondii</i> . Cellular Microbiology, 2012, 14, 1921-1933.	1.1	60
30	UNC93B1 Mediates Host Resistance to Infection with Toxoplasma gondii. PLoS Pathogens, 2010, 6, e1001071.	2.1	59
31	SPECIFIC POSITIVE SELECTION OF LYMPHOCYTES REACTIVE TO STRONG HISTOCOMPATIBILITY ANTIGENS. Journal of Experimental Medicine, 1974, 140, 660-672.	4.2	55
32	Distinct functional properties of the TAP subunits coordinate the nucleotide-dependent transport cycle. Current Biology, 2001, 11, 242-251.	1.8	55
33	The distribution of Tap2 alleles among laboratory rat RT1 haplotypes. Immunogenetics, 1994, 40, 45-53.	1.2	49
34	Inactive and Active States of the Interferon-inducible Resistance GTPase, Irga6, in Vivo. Journal of Biological Chemistry, 2008, 283, 32143-32151.	1.6	48
35	Loss of the interferon-Î ³ -inducible regulatory immunity-related GTPase (IRG), Irgm1, causes activation of effector IRG proteins on lysosomes, damaging lysosomal function and predicting the dramatic susceptibility of Irgm1-deficient mice to infection. BMC Biology, 2016, 14, 33.	1.7	46
36	The role of recirculating lymphocytes in the immunological competence of rat bone marrow cells. Cellular Immunology, 1972, 3, 421-429.	1.4	40

JONATHAN C HOWARD

#	Article	IF	CITATIONS
37	Modeling Infectious Disease in Mice: Co-Adaptation and the Role of Host-Specific IFNÎ ³ Responses. PLoS Pathogens, 2009, 5, e1000333.	2.1	37
38	The impact of Toxoplasma gondii on the mammalian genome. Current Opinion in Microbiology, 2016, 32, 19-25.	2.3	37
39	Cell-autonomous immunity to Toxoplasma gondii in mouse and man. Microbes and Infection, 2007, 9, 1652-1661.	1.0	35
40	lrgm1 (LRC-47), a Regulator of Cell-Autonomous Immunity, Does Not Localize to Mycobacterial or Listerial Phagosomes in IFN-γ–Induced Mouse Cells. Journal of Immunology, 2013, 191, 1765-1774.	0.4	35
41	The alloantigenic organization of RT1Aa, a class I major histocompatibility complex molecule of the rat. European Journal of Immunology, 1984, 14, 405-412.	1.6	33
42	Cellular immunology: Immunological help at last. Nature, 1985, 314, 494-495.	13.7	33
43	Collaboration between thymus-derived and marrow-derived thoracic duct lymphocytes in the hemolysin response of the rat. Cellular Immunology, 1972, 3, 430-441.	1.4	31
44	The activation mechanism of Irga6, an interferon-inducible GTPase contributing to mouse resistance against Toxoplasma gondii. BMC Biology, 2011, 9, 7.	1.7	31
45	RabGDlα is a negative regulator of interferon-γ–inducible GTPase-dependent cell-autonomous immunity to <i>Toxoplasma gondii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4581-90.	3.3	30
46	Rat RT1 orthologs of mouse H2-M class lb genes. Immunogenetics, 1995, 42, 63-67.	1.2	29
47	The Mouse Resistance Protein Irgm1 (LRG-47): A Regulator or an Effector of Pathogen Defense?. PLoS Pathogens, 2010, 6, e1001008.	2.1	27
48	Antigen recognition. Current Opinion in Immunology, 1997, 9, 71-74.	2.4	26
49	Localisation and Mislocalisation of the Interferon-Inducible Immunity-Related GTPase, Irgm1 (LRG-47) in Mouse Cells. PLoS ONE, 2010, 5, e8648.	1.1	26
50	Molecular mechanism for the control of virulent Toxoplasma gondii infections in wild-derived mice. Nature Communications, 2019, 10, 1233.	5.8	24
51	Why didn't Darwin discover Mendel's laws?. Journal of Biology, 2009, 8, 15.	2.7	22
52	The major histocompatibility complex of the rat: A partial review. Metabolism: Clinical and Experimental, 1983, 32, 41-50.	1.5	21
53	Identification of the Microsporidian Encephalitozoon cuniculi as a New Target of the IFNγ-Inducible IRG Resistance System. PLoS Pathogens, 2014, 10, e1004449.	2.1	21
54	Brucella abortus induces Irgm3 and Irga6 expression via type-I IFN by a MyD88-dependent pathway, without the requirement of TLR2, TLR4, TLR5 and TLR9. Microbial Pathogenesis, 2009, 47, 299-304.	1.3	20

JONATHAN C HOWARD

#	Article	IF	CITATIONS
55	Antibody density on rat red cells determines the rate of activation of the complement component Cl. European Journal of Immunology, 1985, 15, 976-980.	1.6	18
56	Analysis of lymphocytes reactive to histocompatibility antigens. Cellular Immunology, 1979, 43, 304-316.	1.4	17
57	lgG pair formation on one antigenic molecule is the main mechanism of synergy between antibodies in complement-mediated lysis. European Journal of Immunology, 1984, 14, 974-978.	1.6	14
58	Targeting behavior of rat monoclonal IgG antibodiesin vivo: role of antibody isotype, specificity and the target cell antigen density. European Journal of Immunology, 1991, 21, 943-950.	1.6	13
59	Differential effect of transporter Tap 2 gene introduction into RMA-S cells on viral antigen processing. European Journal of Immunology, 1993, 23, 3082-3088.	1.6	11
60	Some Biological Aspects of Lymphocytes Reactive to Strong Histocompatibility Alloantigens. Immunological Reviews, 1972, 12, 3-29.	2.8	10
61	A tropical Volute shell and the Icarus syndrome. Nature, 1981, 290, 441-442.	13.7	9
62	A Dedicated Promoter Drives Constitutive Expression of the Cell-Autonomous Immune Resistance GTPase, Irga6 (IIGP1) in Mouse Liver. PLoS ONE, 2009, 4, e6787.	1.1	8
63	Demonstration of MHC-specific haemolytic plaque-forming cells. Nature, 1979, 278, 449-451.	13.7	7
64	Introduction: cell-autonomous immunity. Microbes and Infection, 2007, 9, 1633-1635.	1.0	6
65	Analysis of lymphocytes reactive to histocompatibility antigens. Cellular Immunology, 1979, 46, 119-126.	1.4	4
66	What the papers say: Membrane recycling and antigen presentation. BioEssays, 1986, 4, 265-267.	1.2	4
67	Spontaneous focal activation of invariant natural killer T (iNKT) cells in mouse liver and kidney. BMC Biology, 2010, 8, 142.	1.7	4
68	Analysis of lymphocytes reactive to histocompatibility antigens. Cellular Immunology, 1979, 43, 317-325.	1.4	3
69	Analysis of lymphocytes reactive to histocompatibility antigens. Cellular Immunology, 1979, 46, 127-137.	1.4	3
70	Complement-dependent synergistic effects of rat monoclonal IgG antibodiesin vivo. European Journal of Immunology, 1993, 23, 369-375.	1.6	3
71	Evolution of immunity and pathogens. European Journal of Immunology, 2007, 37, 1721-1723.	1.6	3
72	Xenogeneic responses in vitro in the Syrian hamster, Mesocricetus auratus. I. Evidence for a normal T cell repertoire. International Immunology, 1991, 3, 49-56.	1.8	2

#	Article	IF	CITATIONS
73	ls a mutator analogous to the Ig hypermutator of the sheep ileal Peyer's patch active on MHC class I genes in the germ line?. Immunogenetics, 2000, 51, 462-472.	1.2	1
74	C1 activation by immunoglobulin and immunoglobulin antibodies. Biochemical Society Transactions, 1984, 12, 738-739.	1.6	0
75	Immunity-related GTPase M (IRGM) proteins influence the localization of guanylate-binding protein 2 (GBP2) by modulating macroautophagy Journal of Biological Chemistry, 2013, 288, 11504.	1.6	Ο
76	The intracellular parasite Toxoplasma injects polymorphic proteins into the host cell that subvert host defenses including recruitment of host mitochondria and membrane attack by p47 GTPases. FASEB Journal, 2012, 26, 95.3.	0.2	0
77	Methods for the Measurement of Early Events in Toxoplasma gondii Immunity in Mouse Cells. Methods in Molecular Biology, 2020, 2071, 371-409.	0.4	Ο