Israel Zilbermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8500601/publications.pdf

Version: 2024-02-01

933447 839539 37 355 10 18 citations g-index h-index papers 39 39 39 445 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Mechanisms of Reaction Between Co(II) Complexes and Peroxymonosulfate. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	3
2	Reactions of methyl, hydroxyl and peroxyl radicals with the DOTA chelating agent used in medical imaging. Free Radical Biology and Medicine, 2022, 180, 134-142.	2.9	5
3	Radicals in â€biologically relevant' concentrations behave differently: Uncovering new radical reactions following the reaction of hydroxyl radicals with DMSO. Free Radical Biology and Medicine, 2021, 162, 555-560.	2.9	11
4	Redox Properties of CelVDOTA in Carbonated Aqueous Solutions. A Radiolytic and an Electrochemical Study. Journal of Physical Chemistry A, 2021, 125, 1436-1446.	2.5	2
5	Oligomers Intermediates in Between Two New Distinct Homonuclear Uranium(IV) DOTP Complexes**. Chemistry - A European Journal, 2021, 27, 8264-8267.	3.3	3
6	On the Aqueous Chemistry of the U ^{IV} â€"DOTA Complex. Chemistry - A European Journal, 2020, 26, 3390-3403.	3.3	12
7	On the reactions of methyl radicals with nitrilotris(methylenephosphonic-acid) complexes in aqueous solutions. Journal of Coordination Chemistry, 2019, 72, 3445-3457.	2.2	3
8	Mechanistic Studies on the Role of [Cu ^{II} (CO ₃) _{<i>n</i>}] ^{2â^²2<i>n</i>} as a Water Oxidation Catalyst: Carbonate as a Nonâ€Innocent Ligand. Chemistry - A European Journal, 2018, 24, 1088-1096.	3.3	21
9	Copper(II) catalyses the reduction of perchlorate by both formaldehyde and by dihydrogen in aqueous solutions. Journal of Coordination Chemistry, 2018, 71, 2905-2912.	2.2	2
10	Reactions of carbonate radical anion with amino-carboxylate complexes of manganese(II) and iron(III). Journal of Coordination Chemistry, 2018, 71, 1749-1760.	2.2	2
11	Structural Characterization of Am(III)- and Pu(III)-DOTA Complexes. Inorganic Chemistry, 2017, 56, 12248-12259.	4.0	22
12	Role of lycopene in preventing lipid peroxidation products, in commercial infant milk formula. Journal of Maternal-Fetal and Neonatal Medicine, 2016, 29, 2865-2869.	1.5	2
13	BH ₄ ^{â€"} â€Promoted, Radicalâ€Initiated, Catalytic Oxidation of (CH ₃) ₂ SO by N ₂ O in Aqueous Solution. European Journal of Inorganic Chemistry, 2016, 2016, 1161-1164.	2.0	1
14	Effect of Hydrogen Pretreatment of Platinum Nanoparticles on their Catalytic Properties: Reactions with Alkyl Radicals – A Mechanistic Study. ChemCatChem, 2016, 8, 2761-2764.	3.7	12
15	Spectroscopic, electrochemical, and structural aspects of the Ce(IV)/Ce(III) DOTA redox couple chemistry in aqueous solutions. Journal of Coordination Chemistry, 2016, 69, 2895-2907.	2.2	10
16	Different oxidation mechanisms of Mn ^{II} (polyphosphate) _n by the radicals and. Journal of Coordination Chemistry, 2016, 69, 1709-1721.	2.2	6
17	Coating Platinum Nanoparticles with Methyl Radicals: Effects on Properties and Catalytic Implications. Chemistry - A European Journal, 2015, 21, 19000-19009.	3.3	14
18	Design of a ligand suitable for sensitive uranyl analysis in aqueous solutions. Journal of Coordination Chemistry, 2015, 68, 3079-3087.	2.2	1

#	Article	IF	CITATIONS
19	On the Mechanism of Reduction of Maleate Ions by NilComplexes with Tetraazamacrocyclic Ligands in Aqueous Solutions. European Journal of Inorganic Chemistry, 2014, 2014, 932-940.	2.0	2
20	Pyrophosphate as a stabilizer of Ni(III) ions in aqueous solutions. Inorganica Chimica Acta, 2013, 405, 72-76.	2.4	7
21	H/D Kinetic Isotope Effect as a Tool to Elucidate the Reaction Mechanism of Methyl Radicals with Glycine in Aqueous Solutions. Journal of Physical Chemistry A, 2013, 117, 13996-13998.	2.5	5
22	ions do not catalyze the decomposition of peroxomonosulfate. Journal of Coordination Chemistry, 2013, 66, 4355-4362.	2.2	1
23	The redox chemistry of copper tetraphenylporphyrin revisited. Journal of Porphyrins and Phthalocyanines, 2012, 16, 1124-1131.	0.8	7
24	Anions as stabilizing ligands for Ni(III)(cyclam) in aqueous solutions. Inorganica Chimica Acta, 2010, 363, 2819-2823.	2.4	13
25	Reactions of Alkyl Peroxyl Radicals with Metal Nanoparticles in Aqueous Solutions. Journal of Physical Chemistry C, 2009, 113, 3281-3286.	3.1	10
26	Pyrophosphate and ATP as Stabilizing Ligands for High-Valent Nickel Complexes. European Journal of Inorganic Chemistry, 2006, 2006, 523-525.	2.0	2
27	The Redox Chemistry of (N1-[3-(2-aminoethylimino)-1,1-dimethylbutyl]ethane-1,2-diamine)nickel(II) Perchlorate, NillL1(ClO4)2, in Aqueous Solutions -A Pulse Radiolytic and an Electrochemical Study. European Journal of Inorganic Chemistry, 2005, 2005, 4335-4340.	2.0	0
28	Mechanism of Isomerization of Ni(cyclam) in Aqueous Solutions. European Journal of Inorganic Chemistry, 2005, 2005, 4997-5004.	2.0	5
29	Redox Chemistry of Nickel Complexes in Aqueous Solutions. Chemical Reviews, 2005, 105, 2609-2626.	47.7	93
30	Oxidation of CH3NH2 and (CH3)2NH by Nilll(cyclam)(H2O)23+ in Aqueous Solutions. European Journal of Inorganic Chemistry, 2004, 2004, 4002-4005.	2.0	5
31	Mechanism of Reduction of 2,2-Dibromomethyl-1,3-propanediol by Nil-Tetraazamacrocyclic Complexes in Aqueous Solutionân' A Pulse Radiolysis and Electrochemical Study. European Journal of Inorganic Chemistry, 2003, 2003, 4105-4109.	2.0	8
32	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2001, 41, 179-184.	1.6	4
33	Oxidation of Ascorbate by Ni(III) Complexes with Tetraaza-macrocyclic Ligands in Neutral Aqueous Solutions. A Pulse-Radiolysis Study. Supramolecular Chemistry, 2001, 13, 325-332.	1.2	6
34	Cooperative oxidation of edta by Ni(III) and dioxygen. A pulse radiolysis study. Inorganic Chemistry Communication, 1998, 1, 46-48.	3.9	9
35	Properties of the Nickel(III) Complex with 1,4,8,11-Tetraazacyclotetradecane-1,4,8,11-tetraacetate in Aqueous Solution. Inorganic Chemistry, 1996, 35, 5127-5131.	4.0	18
36	Tertiary-poly-amine ligands as stabilisers of transition metal complexes with uncommon oxidation states. Supramolecular Chemistry, 1996, 6, 275-279.	1.2	27

3

 #	Article	IF	CITATIONS
37	Effect of pressure on an intramolecular electron-transfer reaction induced by pulse-radiolysis. High Pressure Research, 1991, 6, 287-290.	1.2	1