Yuexiang Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8500497/publications.pdf

Version: 2024-02-01

117625 149698 3,352 72 34 56 h-index citations g-index papers 73 73 73 4063 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cu2O@reduced graphene oxide composite for removal of contaminants from water and supercapacitors. Journal of Materials Chemistry, 2011, 21, 10645.	6.7	200
2	Performance and Mechanism of Uranium Adsorption from Seawater to Poly(dopamine)-Inspired Sorbents. Environmental Science & Env	10.0	168
3	Colorimetric sensor array based on gold nanoparticles: Design principles and recent advances. TrAC - Trends in Analytical Chemistry, 2020, 122, 115754.	11.4	147
4	Fluorescence sensor array based on amino acid derived carbon dots for pattern-based detection of toxic metal ions. Sensors and Actuators B: Chemical, 2017, 241, 1324-1330.	7.8	139
5	Improved performances of \hat{l}^2 -Ni(OH)2@reduced-graphene-oxide in Ni-MH and Li-ion batteries. Chemical Communications, 2011, 47, 3159.	4.1	126
6	Heteroatomâ€Doped Carbon Dots (CDs) as a Class of Metalâ€Free Photocatalysts for PETâ€RAFT Polymerization under Visible Light and Sunlight. Angewandte Chemie - International Edition, 2018, 57, 12037-12042.	13.8	121
7	Self-assembly into magnetic Co ₃ O ₄ complex nanostructures as peroxidase. Journal of Materials Chemistry, 2012, 22, 527-534.	6.7	116
8	Aptamer-Based Plasmonic Sensor Array for Discrimination of Proteins and Cells with the Naked Eye. Analytical Chemistry, 2013, 85, 6571-6574.	6.5	114
9	Surface-Initiated ARGET ATRP of Poly(Glycidyl Methacrylate) from Carbon Nanotubes via Bioinspired Catechol Chemistry for Efficient Adsorption of Uranium Ions. ACS Macro Letters, 2016, 5, 382-386.	4.8	105
10	Visualization of Adsorption: Luminescent Mesoporous Silica-Carbon Dots Composite for Rapid and Selective Removal of U(VI) and in Situ Monitoring the Adsorption Behavior. ACS Applied Materials & Samp; Interfaces, 2017, 9, 7392-7398.	8.0	96
11	Sunlight-induced uranium extraction with triazine-based carbon nitride as both photocatalyst and adsorbent. Applied Catalysis B: Environmental, 2021, 282, 119523.	20.2	91
12	Multidimensional Sensor for Pattern Recognition of Proteins Based on DNA–Gold Nanoparticles Conjugates. Analytical Chemistry, 2015, 87, 3354-3359.	6.5	89
13	Protein Discrimination Using Fluorescent Gold Nanoparticles on Plasmonic Substrates. Analytical Chemistry, 2012, 84, 4258-4261.	6.5	88
14	Mg(OH) < sub > 2 < /sub > Complex Nanostructures with Superhydrophobicity and Flame Retardant Effects. Journal of Physical Chemistry C, 2010, 114, 17362-17368.	3.1	87
15	Microplasma-assisted rapid synthesis of luminescent nitrogen-doped carbon dots and their application in pH sensing and uranium detection. Nanoscale, 2015, 7, 20743-20748.	5.6	86
16	Application of carbon dots and their composite materials for the detection and removal of radioactive ions: A review. Chemosphere, 2022, 287, 132313.	8.2	82
17	Lab-on-graphene: graphene oxide as a triple-channel sensing device for protein discrimination. Chemical Communications, 2013, 49, 81-83.	4.1	77
18	Multidimensional colorimetric sensor array for discrimination of proteins. Biosensors and Bioelectronics, 2016, 86, 56-61.	10.1	66

#	Article	IF	CITATIONS
19	Colorimetric Nanosensor Based on the Aggregation of AuNP Triggered by Carbon Quantum Dots for Detection of Ag ⁺ lons. ACS Sustainable Chemistry and Engineering, 2018, 6, 3706-3713.	6.7	56
20	Ag2Se complex nanostructures with photocatalytic activity and superhydrophobicity. Nano Research, 2010, 3, 863-873.	10.4	55
21	Graphene aerogel capsulated precipitants for high efficiency and rapid elimination of uranium from water. Chemical Engineering Journal, 2020, 396, 125272.	12.7	54
22	Metal-Free Photoinduced Electron Transfer–Atom Transfer Radical Polymerization Integrated with Bioinspired Polydopamine Chemistry as a Green Strategy for Surface Engineering of Magnetic Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2017, 9, 13637-13646.	8.0	52
23	Graphene aerogel for photocatalysis-assist uranium elimination under visible light and air atmosphere. Chemical Engineering Journal, 2020, 402, 126256.	12.7	52
24	Surface-initiated SET-LRP mediated by mussel-inspired polydopamine chemistry for controlled building of novel core–shell magnetic nanoparticles for highly-efficient uranium enrichment. Polymer Chemistry, 2016, 7, 2427-2435.	3.9	50
25	Microplasma electrochemistry controlled rapid preparation of fluorescent polydopamine nanoparticles and their application in uranium detection. Chemical Engineering Journal, 2018, 344, 480-486.	12.7	49
26	$\label{lem:mgCO} MgCO < sub > 3 < / sub > \hat{A} \cdot 3H < sub > 2 < / sub > O \ and \ MgO \ complex \ nanostructures: controllable biomimetic fabrication and physical chemical properties. Physical Chemistry Chemical Physics, 2011, 13, 5047-5052.$	2.8	45
27	Fluorescence sensor array based on amino acids-modulating quantum dots for the discrimination of metal ions. Analytica Chimica Acta, 2017, 985, 175-182.	5.4	45
28	A smartphone readable colorimetric sensing platform for rapid multiple protein detection. Analyst, The, 2017, 142, 3177-3182.	3.5	45
29	Graphene Oxide Membranes for Tunable Ion Sieving in Acidic Radioactive Waste. Advanced Science, 2021, 8, 2002717.	11.2	44
30	Cyclodextrin functionalized 3D-graphene for the removal of Cr(VI) with the easy and rapid separation strategy. Environmental Pollution, 2019, 254, 112854.	7.5	43
31	Self-Cascade System Based on Cupric Oxide Nanoparticles as Dual-Functional Enzyme Mimics for Ultrasensitive Detection of Silver Ions. ACS Sustainable Chemistry and Engineering, 2018, 6, 12132-12139.	6.7	40
32	Microplasma-assisted rapid, chemical oxidant-free and controllable polymerization of dopamine for surface modification. Polymer Chemistry, 2017, 8, 4388-4392.	3.9	38
33	Localized Surface Plasmon Resonance Meets Controlled/Living Radical Polymerization: An Adaptable Strategy for Broadband Lightâ€Regulated Macromolecular Synthesis. Angewandte Chemie - International Edition, 2019, 58, 12096-12101.	13.8	38
34	Colorimetric sensor array for proteins discrimination based on the tunable peroxidase-like activity of AuNPs-DNA conjugates. Sensors and Actuators B: Chemical, 2017, 245, 66-73.	7.8	37
35	Ratiometric fluorescence sensor arrays based on quantum dots for detection of proteins. Analyst, The, 2016, 141, 2046-2052.	3.5	34
36	Shape controlled synthesis of superhydrophobic zinc coordination polymers particles and their calcination to superhydrophobic ZnO. Journal of Materials Chemistry, 2011, 21, 8633.	6.7	33

#	Article	IF	Citations
37	A nanoplasmonic probe as a triple channel colorimetric sensor array for protein discrimination. Analyst, The, 2016, 141, 4014-4017.	3.5	33
38	Heteroatomâ€Doped Carbon Dots (CDs) as a Class of Metalâ€Free Photocatalysts for PETâ€RAFT Polymerization under Visible Light and Sunlight. Angewandte Chemie, 2018, 130, 12213-12218.	2.0	33
39	Glucosan controlled biomineralization of SrCO3 complex nanostructures with superhydrophobicity and adsorption properties. Journal of Materials Chemistry, 2011, 21, 8734.	6.7	32
40	Polydopamine Induced in-Situ Formation of Metallic Nanoparticles in Confined Microchannels of Porous Membrane as Flexible Catalytic Reactor. ACS Applied Materials & Samp; Interfaces, 2018, 10, 14735-14743.	8.0	32
41	Controlled Architecture of Hybrid Polymer Nanocapsules with Tunable Morphologies by Manipulating Surface-Initiated ARGET ATRP from Hydrothermally Modified Polydopamine. Chemistry of Materials, 2017, 29, 10212-10219.	6.7	30
42	Dispersion-aggregation-dispersion colorimetric detection for mercury ions based on an assembly of gold nanoparticles and carbon nanodots. Analyst, The, 2018, 143, 4741-4746.	3.5	30
43	Single nanoporous gold nanowire as a tunable one-dimensional platform for plasmon-enhanced fluorescence. Chemical Communications, 2016, 52, 1808-1811.	4.1	26
44	An ultra-sensitive colorimetric detection of Ag ions based on etching AuNP@MnO2 nanoparticles with glutathione by using dark field optical microscopy. Sensors and Actuators B: Chemical, 2021, 330, 129382.	7.8	21
45	DNA-templated copper nanoclusters as a fluorescent probe for fluoride by using aluminum ions as a bridge. Mikrochimica Acta, 2019, 186, 364.	5.0	20
46	Redox Recycling-Activated Signal Amplification of Peroxidase-like Catalytic Activity Based on Bare Gold Nanoparticle–Metal Ion Ensembles as Colorimetric Sensor Array for Ultrasensitive Discrimination of Phosphates. ACS Sustainable Chemistry and Engineering, 2021, 9, 9802-9812.	6.7	20
47	Pinpoint the Positions of Single Nucleotide Polymorphisms by a Nanocluster Dimer. Analytical Chemistry, 2017, 89, 2622-2627.	6.5	19
48	Quantitative Analysis of Surface Sites on Carbon Dots and Their Interaction with Metal Ions by a Potentiometric Titration Method. Analytical Chemistry, 2019, 91, 9690-9697.	6.5	19
49	Localized Surface Plasmon Resonance Meets Controlled/Living Radical Polymerization: An Adaptable Strategy for Broadband Lightâ€Regulated Macromolecular Synthesis. Angewandte Chemie, 2019, 131, 12224-12229.	2.0	18
50	A colorimetric sensor array for protein discrimination based on carbon nanodots-induced reversible aggregation of AuNP with GSH as a regulator. Sensors and Actuators B: Chemical, 2019, 296, 126677.	7.8	18
51	New short-channel SBA-15 mesoporous silicas functionalized with polyazamacrocyclic ligands for selective capturing of palladium ions in HNO ₃ media. RSC Advances, 2016, 6, 66537-66547.	3.6	17
52	Time-resolved phosphorescent sensor array based on quantum dots for recognition of proteins. Sensors and Actuators B: Chemical, 2016, 233, 17-24.	7.8	16
53	Atmospheric-pressure microplasma as anode for rapid and simple electrochemical deposition of copper and cuprous oxide nanostructures. RSC Advances, 2015, 5, 62619-62623.	3.6	13
54	Continuously evolving â€~chemical tongue' biosensor for detecting proteins. Talanta, 2017, 165, 182-187.	5 . 5	13

#	Article	IF	Citations
55	Time-resolved determination of Fe(II) ions using cysteine-bridged Mn-doped ZnS quantum dots as a phosphorimetric probe. Mikrochimica Acta, $2018,185,298.$	5.0	11
56	On-off-on luminescent pyrophosphate probe based on the use of Mn-doped ZnS quantum dots and using Eu(III) as a mediator. Mikrochimica Acta, 2018, 185, 480.	5.0	10
57	Microplasma electrochemistry (MIPEC) strategy for accelerating the synthesis of metal organic frameworks at room temperature. Chinese Chemical Letters, 2021, 32, 497-500.	9.0	10
58	Carbon dots and carbon nitride composite for photocatalytic removal of uranium under air atmosphere. Chinese Chemical Letters, 2022, 33, 3573-3576.	9.0	10
59	Acquiring multiple signals along with the reaction time: improving recognition capability of a multidimensional colorimetric sensor array for sensitive protein detection. Analyst, The, 2017, 142, 2663-2669.	3.5	9
60	Nano Endoscopy with Plasmon-Enhanced Fluorescence for Sensitive Sensing Inside Ultrasmall Volume Samples. Analytical Chemistry, 2017, 89, 1045-1048.	6.5	9
61	Controlled Architecture of Glass Fiber/Poly(glycidyl methacrylate) Composites via Surface-Initiated ICAR ATRP Mediated by Mussel-Inspired Polydopamine Chemistry. Industrial & Engineering Chemistry Research, 2017, 56, 11467-11476.	3.7	9
62	Bare eye detection of Hg(II) ions based on enzyme inhibition and using mercaptoethanol as a reagent to improve selectivity. Mikrochimica Acta, 2018, 185, 174.	5.0	9
63	DNA-scaffold copper nanoclusters integrated into a cerium(III)-triggered Fenton-like reaction for the fluorometric and colorimetric enzymatic determination of glucose. Mikrochimica Acta, 2019, 186, 862.	5.0	8
64	lodide-assisted silver nanoplates for colorimetric determination of chromium(III) and copper(II) via an aggregation/fusion/oxidation etching strategy. Mikrochimica Acta, 2020, 187, 19.	5.0	7
65	In situ monitoring of catalytic reaction on single nanoporous gold nanowire with tuneable SERS and catalytic activity. Talanta, 2020, 218, 121181.	5.5	7
66	Charge-Transfer Reactions at the Interface between Atmospheric- Pressure Microplasma Anode and Ionic Solution. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31, 1215-1218.	4.9	6
67	Microplasma Anode Meeting Molten Salt Electrochemistry: Charge Transfer and Atomic Emission Spectral Analysis. Analytical Chemistry, 2018, 90, 13163-13166.	6.5	6
68	Single-strand DNA-scaffolded copper nanoclusters for the determination of inorganic pyrophosphatase activity and screening of its inhibitor. Mikrochimica Acta, 2020, 187, 672.	5.0	6
69	Structural design of metal catalysts based on ZIFs: From nanoscale to atomic level. Nano Select, 2021, 2, 1902-1925.	3.7	6
70	Electroâ€optical Gas Sensor Based on a Planar Lightâ€Emitting Electrochemical Cell Microarray. Small, 2010, 6, 1897-1899.	10.0	3
71	Metal-enhanced fluorescence of graphene oxide sheets. Analytical and Bioanalytical Chemistry, 2022, 414, 3625-3630.	3.7	3
72	Lab-on-nanoparticle as a multidimensional device for colorimetric discrimination of proteins. Mikrochimica Acta, 2017, 184, 3265-3271.	5.0	2