David M Nelson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8500401/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Terrestrial Nitrogen Inputs Affect the Export of Unprocessed Atmospheric Nitrate to Surface Waters: Insights from Triple Oxygen Isotopes of Nitrate. Ecosystems, 2022, 25, 1384-1399.	1.6	8
2	Genotypic variation and plasticity in climate-adaptive traits after range expansion and fragmentation of red spruce (<i>Picea rubens</i> Sarg.). Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210008.	1.8	10
3	Vulnerability of avian populations to renewable energy production. Royal Society Open Science, 2022, 9, 211558.	1.1	17
4	White-Nose Syndrome Pathogen Pseudogymnoascus destructans Detected in Migratory Tree-Roosting Bats. Journal of Wildlife Diseases, 2022, 58, .	0.3	1
5	Growthâ€defense tradeâ€offs masked in unadmixed populations are revealed by hybridization. Evolution; International Journal of Organic Evolution, 2021, 75, 1450-1465.	1.1	3
6	Wholeâ€exome sequencing reveals a longâ€ŧerm decline in effective population size of red spruce (<i>Picea rubens</i>). Evolutionary Applications, 2020, 13, 2190-2205.	1.5	19
7	Positive correlation between wood \hat{l}' ¹⁵ N and stream nitrate concentrations in two temperate deciduous forests. Environmental Research Communications, 2020, 2, 025003.	0.9	8
8	Frequent burning causes large losses of carbon from deep soil layers in a temperate savanna. Journal of Ecology, 2020, 108, 1426-1441.	1.9	23
9	Assessing populationâ€level consequences of anthropogenic stressors for terrestrial wildlife. Ecosphere, 2020, 11, e03046.	1.0	16
10	Advancing interpretation of stable isotope assignment maps: comparing and summarizing origins of known-provenance migratory bats. Animal Migration, 2020, 7, 27-41.	1.1	13
11	Using trace elements to identify the geographic origin of migratory bats. PeerJ, 2020, 8, e10082.	0.9	11
12	Century-scale wood nitrogen isotope trajectories from an oak savanna with variable fire frequencies. Biogeosciences, 2020, 17, 4509-4522.	1.3	4
13	Sequencing whole mitochondrial genomes to assess genetic divergence between proposed silver-haired bat (<i>Lasionycteris noctivagans)</i> populations. Mitochondrial DNA Part B: Resources, 2020, 5, 3838-3839.	0.2	2
14	Reply to: Data do not support large-scale oligotrophication of terrestrial ecosystems. Nature Ecology and Evolution, 2019, 3, 1287-1288.	3.4	4
15	Unprocessed Atmospheric Nitrate in Waters of the Northern Forest Region in the U.S. and Canada. Environmental Science & Technology, 2019, 53, 3620-3633.	4.6	34
16	Wind energy: An ecological challenge. Science, 2019, 366, 1206-1207.	6.0	43
17	Seasonal, sub-seasonal and diurnal variation of soil bacterial community composition in a temperate deciduous forest. FEMS Microbiology Ecology, 2019, 95, .	1.3	20
18	Light variability and mixotrophy: Responses of testate amoeba communities and shell δ13C values to a peatland shading experiment. European Journal of Protistology, 2019, 67, 15-26.	0.5	7

DAVID M NELSON

#	Article	IF	CITATIONS
19	Drivers of spatial variability in greendown within an oak-hickory forest landscape. Remote Sensing of Environment, 2018, 210, 422-433.	4.6	9
20	Application of isoscapes to determine geographic origin of terrestrial wildlife for conservation and management. Biological Conservation, 2018, 228, 268-280.	1.9	34
21	Carcass age and searcher identity affect morphological assessment of sex of bats. Journal of Wildlife Management, 2018, 82, 1582-1587.	0.7	4
22	Isotopic evidence for oligotrophication of terrestrial ecosystems. Nature Ecology and Evolution, 2018, 2, 1735-1744.	3.4	138
23	Effect of heat and singeing on stable hydrogen isotope ratios of bird feathers and implications for their use in determining geographic origin. Rapid Communications in Mass Spectrometry, 2018, 32, 1859-1866.	0.7	2
24	Triple oxygen isotopes indicate urbanization affects sources of nitrate in wet and dry atmospheric deposition. Atmospheric Chemistry and Physics, 2018, 18, 6381-6392.	1.9	23
25	Isotopic analysis on nanogram quantities of carbon from dissolved insect cuticle: a method for paleoenvironmental inferences. Rapid Communications in Mass Spectrometry, 2017, 31, 1825-1834.	0.7	3
26	Centennial-scale reductions in nitrogen availability in temperate forests of the United States. Scientific Reports, 2017, 7, 7856.	1.6	53
27	Continental scale variability of foliar nitrogen and carbon isotopes in Populus balsamifera and their relationships with climate. Scientific Reports, 2017, 7, 7759.	1.6	9
28	Trophic position and dietary breadth of bats revealed by nitrogen isotopic composition of amino acids. Scientific Reports, 2017, 7, 15932.	1.6	12
29	Golden Eagle fatalities and the continentalâ€scale consequences of local windâ€energy generation. Conservation Biology, 2017, 31, 406-415.	2.4	46
30	Late-Quaternary variation in C3 and C4 grass abundance in southeastern Australia as inferred from Ĩ13C analysis: Assessing the roles of climate, pCO2, and fire. Quaternary Science Reviews, 2016, 139, 67-76.	1.4	10
31	Watershed-scale changes in terrestrial nitrogen cycling during a period of decreased atmospheric nitrate and sulfur deposition. Atmospheric Environment, 2016, 146, 271-279.	1.9	16
32	Episodic, seasonal, and annual export of atmospheric and microbial nitrate from a temperate forest. Geophysical Research Letters, 2016, 43, 683-691.	1.5	18
33	Earlier springs are causing reduced nitrogen availability in North American eastern deciduous forests. Nature Plants, 2016, 2, 16133.	4.7	52
34	Geographic origins and population genetics of bats killed at windâ€energy facilities. Ecological Applications, 2016, 26, 1381-1395.	1.8	28
35	Carbon isotope analyses reveal relatively high abundance of C4 grasses during early–middle Miocene in southwestern Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 443, 10-17. 	1.0	8
36	Stable hydrogen isotopes identify leapfrog migration, degree of connectivity, and summer distribution of Golden Eagles in eastern North America. Condor, 2015, 117, 414-429.	0.7	13

DAVID M NELSON

#	Article	IF	CITATIONS
37	A lateâ€Quaternary perspective on atmospheric <i>p</i> CO ₂ , climate, and fire as drivers of C ₄ â€grass abundance. Ecology, 2015, 96, 642-653.	1.5	17
38	Genomic Resources Notes accepted 1 October 2013 - 30 November 2013. Molecular Ecology Resources, 2014, 14, 435-436.	2.2	5
39	Spatiotemporal variation in the origin of C4 grasses: δ13C analysis of grass pollen from the southeastern United States. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 396, 227-231.	1.0	5
40	Soil properties and tree species drive Ãÿ-diversity of soil bacterial communities. Soil Biology and Biochemistry, 2014, 76, 201-209.	4.2	92
41	Stable hydrogen isotopes record the summering grounds of eastern red bats (<i>Lasiurus) Tj ETQq1 1 0.784314</i>	rgBT/Ove	erlock 10 Tf 5
42	Influence of terrestrial vegetation on leaf wax ÎƊ of Holocene lake sediments. Organic Geochemistry, 2013, 56, 106-110.	0.9	14
43	Declining moisture availability on the Antarctic Peninsula during the Late Eocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 383-384, 72-78.	1.0	23
44	A hierarchical Bayesian approach to the classification of C3 and C4 grass pollen based on SPIRAL δ13C data. Geochimica Et Cosmochimica Acta, 2013, 121, 168-176.	1.6	12
45	Carbon isotopic composition of <i>Ambrosia</i> and <i>Artemisia</i> pollen: assessment of a C ₃ â€plant paleophysiological indicator. New Phytologist, 2012, 195, 787-793.	3.5	12
46	Longâ€ŧerm variability and rainfall control of savanna fire regimes in equatorial East Africa. Global Change Biology, 2012, 18, 3160-3170.	4.2	56
47	How well do sediment indicators record past climate? An evaluation using annually laminated sediments. Journal of Paleolimnology, 2011, 45, 73-84.	0.8	23
48	lsotopic evidence of C4 grasses in southwestern Europe during the Early Oligocene-Middle Miocene. Geology, 2010, 38, 1091-1094.	2.0	65
49	The Origins of C ₄ Grasslands: Integrating Evolutionary and Ecosystem Science. Science, 2010, 328, 587-591.	6.0	899
50	Holocene precipitation seasonality captured by a dual hydrogen and oxygen isotope approach at Steel Lake, Minnesota. Earth and Planetary Science Letters, 2010, 300, 205-214.	1.8	19
51	Phylogenetic Evidence for Lateral Gene Transfer in the Intestine of Marine Iguanas. PLoS ONE, 2010, 5, e10785.	1.1	15
52	Response of Archaeal Communities in the Rhizosphere of Maize and Soybean to Elevated Atmospheric CO2 Concentrations. PLoS ONE, 2010, 5, e15897.	1.1	27
53	Paenibacillus tundrae sp. nov. and Paenibacillus xylanexedens sp. nov., psychrotolerant, xylan-degrading bacteria from Alaskan tundra. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 1708-1714.	0.8	54
54	The magnitude of error in conventional bulk-sediment radiocarbon dates from central North America. Quaternary Research, 2009, 72, 301-308.	1.0	141

DAVID M NELSON

#	Article	IF	CITATIONS
55	Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. Climate Dynamics, 2008, 30, 887-907.	1.7	590
56	Patterns and drivers of Holocene vegetational change near the prairie–forest ecotone in Minnesota: revisiting McAndrews' transect. New Phytologist, 2008, 179, 449-459.	3.5	48
57	Using SPIRAL (Single Pollen Isotope Ratio AnaLysis) to estimate C3- and C4-grass abundance in the paleorecord. Earth and Planetary Science Letters, 2008, 269, 11-16.	1.8	29
58	Carbon-isotopic analysis of individual pollen grains from C3 and C4 grasses using a spooling-wire microcombustion interface. Geochimica Et Cosmochimica Acta, 2007, 71, 4005-4014.	1.6	31
59	Bacterial Diversity and Distribution in the Holocene Sediments of a Northern Temperate Lake. Microbial Ecology, 2007, 54, 252-263.	1.4	49
60	Possible linkages of late-Holocene drought in the North American midcontinent to Pacific Decadal Oscillation and solar activity. Geophysical Research Letters, 2006, 33, .	1.5	31
61	THE INFLUENCE OF ARIDITY AND FIRE ON HOLOCENE PRAIRIE COMMUNITIES IN THE EASTERN PRAIRIE PENINSULA. Ecology, 2006, 87, 2523-2536.	1.5	60
62	Abrupt climatic events during the last glacial-interglacial transition in Alaska. Geophysical Research Letters, 2006, 33, n/a-n/a.	1.5	25
63	Ice-age endurance: DNA evidence of a white spruce refugium in Alaska. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12447-12450.	3.3	227
64	Stable-carbon isotope composition of Poaceae pollen: an assessment for reconstructing C3 and C4 grass abundance. Holocene, 2006, 16, 819-825.	0.9	28
65	Response of C3 and C4 plants to middle-Holocene climatic variation near the prairie-forest ecotone of Minnesota. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 562-567.	3.3	57
66	Cyclic Variation and Solar Forcing of Holocene Climate in the Alaskan Subarctic. Science, 2003, 301, 1890-1893.	6.0	300
67	Response of tundra ecosystem in southwestern Alaska to Younger-Dryas climatic oscillation. Global Change Biology, 2002, 8, 1156-1163.	4.2	44
68	Effects of alder- and salmon-derived nutrients on aquatic bacterial community structure and microbial community metabolism in subarctic lakes. Oecologia, 0, , .	0.9	0