
Junpu Ling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8500394/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel all-metal metamaterial for constructing relativistic slow wave structure. AIP Advances, 2022, 12, 035345.	1.3	1
2	A V-Band Coaxial Relativistic Transit-Time Oscillator Operating in TM ₀₂ Mode With Shallow Corrugated Output Structure. IEEE Electron Device Letters, 2022, 43, 1125-1128.	3.9	2
3	A novel metamaterial slow wave structure with larger space-charge-limited current. Physics of Plasmas, 2021, 28, .	1.9	3
4	A novel dual-band nested transit time oscillator. AIP Advances, 2021, 11, .	1.3	6
5	A novel Ka-band coaxial transit time oscillator with internal extraction. Review of Scientific Instruments, 2021, 92, 094704.	1.3	1
6	Preliminary research of a V-band coaxial relativistic transit-time oscillator with traveling wave output structure. Physics of Plasmas, 2021, 28, .	1.9	4
7	A Ka-band coaxial transit time oscillator with a focusing cathode. AIP Advances, 2021, 11, .	1.3	2
8	A low-magnetic field high-efficiency high-power microwave source with novel diode structure. AIP Advances, 2020, 10, .	1.3	10
9	Field distribution and dispersion characteristics of a coaxial oversized slow wave structure with deep corrugation operating on high-order mode. AIP Advances, 2020, 10, .	1.3	3
10	A Coaxial <i>V</i> -Band Relativistic Transit-Time Oscillator Operating in TM ₀₂ Mode. IEEE Transactions on Plasma Science, 2020, 48, 4350-4355.	1.3	9
11	An improved Ku-band TTO with compact solenoid and better plasma-suppressing collector. AIP Advances, 2019, 9, 025126.	1.3	2
12	Investigation of a cross-band relativistic Cherenkov oscillator based on the cathode adjustment. AIP Advances, 2019, 9, .	1.3	4
13	A novel L-band metamaterial relativistic Cherenkov oscillator with high conversion efficiency. Physics of Plasmas, 2019, 26, .	1.9	13
14	A Ku-band coaxial transit-time oscillator with Pierce-like cathode under permanent magnet packaging. AIP Advances, 2018, 8, .	1.3	1
15	A novel L-band slow wave structure for compact and high-efficiency relativistic Cerenkov oscillator. Physics of Plasmas, 2018, 25, .	1.9	20
16	Experimental research on Ka-band coaxial transit-time oscillator. Physics of Plasmas, 2018, 25, .	1.9	17
17	A novel Ku-band relativistic transit-time oscillator with three-cavity extractor and distance-tunable reflector. Physics of Plasmas, 2017, 24, .	1.9	8
18	An L-band transit-time oscillator with mechanical frequency tunability. Physics of Plasmas, 2017, 24, .	1.9	3

Junpu Ling

#	Article	IF	CITATIONS
19	An Improved Ku-band MILO With Tapered Choke Cavity and Enlarged First Interaction Cavity. IEEE Transactions on Electron Devices, 2017, 64, 286-292.	3.0	8
20	A novel L-band coaxial transit-time oscillator with tunable frequency. AIP Advances, 2017, 7, .	1.3	2
21	Analysis and Suppression of the Higher Order Competition Modes in Ku-Band Magnetically Insulated Transmission Line Oscillator. IEEE Transactions on Plasma Science, 2016, 44, 755-760.	1.3	10
22	Research progresses on Cherenkov and transit-time high-power microwave sources at NUDT. Matter and Radiation at Extremes, 2016, 1, 163-178.	3.9	65
23	An Improved <inline-formula> <tex-math notation="LaTeX">\$K_{u}\$ </tex-math></inline-formula> -Band Magnetically Insulated Transmission Line Oscillator. IEEE Transactions on Plasma Science, 2015, 43, 3541-3545.	1.3	4
24	A novel Ka-band coaxial transit-time oscillator with a four-gap buncher. Physics of Plasmas, 2015, 22, 053107.	1.9	23
25	Experimental research on Ku-Band MILO. , 2015, , .		0
26	Experimental research on Ku-band magnetically insulated transmission line oscillator. Physics of Plasmas, 2015, 22, 102112.	1.9	5
27	Suppression of the asymmetric competition mode in the relativistic Ku-band coaxial transit-time oscillator. Physics of Plasmas, 2014, 21, 103108.	1.9	23
28	Improved foilless Ku-band transit-time oscillator for generating gigawatt level microwave with low guiding magnetic field. Physics of Plasmas, 2014, 21, .	1.9	17
29	Focusing electrode and coaxial reflector used for reducing the guiding magnetic field of the Ku-band foilless transit-time oscillator. Review of Scientific Instruments, 2014, 85, 084702.	1.3	18
30	A novel coaxial Ku-band transit radiation oscillator without external guiding magnetic field. Physics of Plasmas, 2014, 21, 023114.	1.9	19
31	A coaxial ku-band transit radiation oscillator without an external guiding magnetic field. , 2013, , .		1
32	High power microwave generation from the low-impedance transit-time oscillator without foils. Physics of Plasmas, 2012, 19, .	1.9	15
33	Experimental verification of a low-impedance transit-time oscillator without foils. Laser and Particle Beams, 2012, 30, 613-619.	1.0	5
34	Effects of Intense Relativistic Electron Beam on the Microwave Generation in a Foilless Low-Impedance Transit-Time Oscillator. IEEE Transactions on Plasma Science, 2012, 40, 1622-1631.	1.3	13
35	Design of a dual-frequency high-power microwave generator. Laser and Particle Beams, 2011, 29, 479-485.	1.0	20