Nikolaos Kontoudakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8500241/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of the heterogeneity of grape phenolic maturity on wine composition and quality. Food Chemistry, 2011, 124, 767-774.	8.2	121
2	Oenological consequences of sequential inoculation with non-Saccharomyces yeasts (Torulaspora) Tj ETQqO wine production. European Food Research and Technology, 2015, 240, 999-1012.	0 0 rgBT /Ov 3.3	erlock 10 Tf 50 116
3	Influence of Grape Maturity and Maceration Length on Color, Polyphenolic Composition, and Polysaccharide Content of Cabernet Sauvignon and Tempranillo Wines. Journal of Agricultural and Food Chemistry, 2012, 60, 7988-8001.	5.2	90
4	Influence of Wine pH on Changes in Color and Polyphenol Composition Induced by Micro-oxygenation. Journal of Agricultural and Food Chemistry, 2011, 59, 1974-1984.	5.2	50
5	Comparison of methods for estimating phenolic maturity in grapes: Correlation between predicted and obtained parameters. Analytica Chimica Acta, 2010, 660, 127-133.	5.4	46
6	Impact of wine production on the fractionation of copper and iron in Chardonnay wine: Implications for oxygen consumption. Food Chemistry, 2016, 203, 440-447.	8.2	42
7	Oxygen consumption by oak chips in a model wine solution; Influence of the botanical origin, toast level and ellagitannin content. Food Chemistry, 2016, 199, 822-827.	8.2	40
8	Phenolic compounds present in natural haze protein of Sauvignon white wine. Food Research International, 2011, 44, 77-83.	6.2	37
9	Measurement of labile copper in wine by medium exchange stripping potentiometry utilising screen printed carbon electrodes. Talanta, 2016, 154, 431-437.	5.5	28
10	Influence of grape maturity on the foaming properties of base wines and sparkling wines (Cava). Journal of the Science of Food and Agriculture, 2015, 95, 2071-2080.	3.5	27
11	The effect of supplementation with three commercial inactive dry yeasts on the colour, phenolic compounds, polysaccharides and astringency of a model wine solution and red wine. Journal of the Science of Food and Agriculture, 2017, 97, 172-181.	3.5	27
12	The impact of aging wine in high and low oxygen conditions on the fractionation of Cu and Fe in Chardonnay wine. Food Chemistry, 2017, 229, 319-328.	8.2	26
13	The impact of wine components on fractionation of Cu and Fe in model wine systems: Macromolecules, phenolic and sulfur compounds. Food Research International, 2017, 98, 95-102.	6.2	23
14	Biological interactions of a calcium silicate based cement (Biodentineâ"¢) with Stem Cells from Human Exfoliated Deciduous teeth. Dental Materials, 2018, 34, 1797-1813.	3.5	21
15	Influence of the botanical origin and toasting level on the ellagitannin content of wines aged in new and used oak barrels. Food Research International, 2016, 87, 197-203.	6.2	20
16	Analytical strategies for the measurement of different forms of Cu and Fe in wine: Comparison between approaches in relation to wine composition. Food Chemistry, 2019, 274, 89-99.	8.2	19
17	Influence of the volatile substances released by oak barrels into a Cabernet Sauvignon red wine and a discolored Macabeo white wine on sensory appreciation by a trained panel. European Food Research and Technology, 2018, 244, 245-258.	3.3	18
18	Production and Isomeric Distribution of Xanthylium Cation Pigments and Their Precursors in Wine-like Conditions: Impact of Cu(II), Fe(II), Fe(III), Mn(II), Zn(II), and Al(III). Journal of Agricultural and Food Chemistry, 2017, 65, 2414-2425.	5.2	15

#	Article	IF	CITATIONS
19	Changes in Red Wine Composition during Bottle Aging: Impacts of Grape Variety, Vineyard Location, Maturity, and Oxygen Availability during Aging. Journal of Agricultural and Food Chemistry, 2020, 68, 13331-13343.	5.2	13
20	Improved method for the extraction and chromatographic analysis on a fused-core column of ellagitannins found in oak-aged wine. Food Chemistry, 2017, 226, 23-31.	8.2	11
21	Impact of Application of Abscisic Acid, Benzothiadiazole and Chitosan on Berry Quality Characteristics and Plant Associated Microbial Communities of Vitis vinifera L var. Mouhtaro Plants. Sustainability, 2021, 13, 5802.	3.2	11
22	Rapid Quantitation of 12 Volatile Aldehyde Compounds in Wine by LC-QQQ-MS: A Combined Measure of Free and Hydrogen-Sulfite-Bound Forms. Journal of Agricultural and Food Chemistry, 2019, 67, 3502-3510.	5.2	9
23	Sulfide-binding to Cu(II) in wine: Impact on oxygen consumption rates. Food Chemistry, 2020, 316, 126352.	8.2	9
24	Determination of 13 Volatile Aldehyde Compounds in Wine by GC-QQQ-MS: p-Benzoquinone to Dissociate Hydrogen Sulfite Addition Products. Food Analytical Methods, 2019, 12, 1285-1297.	2.6	7
25	Effect of Nitrogen Fertilization on Savvatiano (Vitis vinifera L.) Grape and Wine Composition. Beverages, 2022, 8, 29.	2.8	7
26	Influence of grape maturity and prefermentative cluster treatment of the Grenache cultivar on wine composition and quality. Oeno One, 2017, 50, 169.	1.4	5
27	Sulfide-bound copper removal from red and white wine using membrane and depth filters: Impacts of oxygen, H2S-to-Cu ratios, diatomaceous earth and wine volume. Food Chemistry, 2022, 377, 131758.	8.2	5
28	Increasing the Efficiency and Accuracy of Labile Cu Measurement in Wine with Screen-Printed Electrodes. Chemosensors, 2018, 6, 35.	3.6	4
29	The removal of Cu from wine by copolymer PVI/PVP: Impact on Cu fractions and binding agents. Food Chemistry, 2021, 357, 129764.	8.2	3
30	Copper(II) and Sulfur Dioxide in Chardonnay Juice and Shiraz Must: Impact on Volatile Aroma Compounds and Cu Forms in Wine. Beverages, 2019, 5, 70.	2.8	2
31	Abscisic Acid and Chitosan Modulate Polyphenol Metabolism and Berry Qualities in the Domestic White-Colored Cultivar Savvatiano. Plants, 2022, 11, 1648.	3.5	1