Marko JoÅ;t

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8499725/publications.pdf Version: 2024-02-01

		394421	552781
30	3,815	19	26
papers	citations	h-index	g-index
31	31	31	3585
all docs	docs citations	times ranked	citing authors

Μλρκο ΙοΔιτ

#	Article	IF	CITATIONS
1	Energy yield of perovskite solar cells: Influence of location, orientation, and external light management. Solar Energy Materials and Solar Cells, 2022, 234, 111421.	6.2	9
2	Perovskite/CIGS Tandem Solar Cells: From Certified 24.2% toward 30% and Beyond. ACS Energy Letters, 2022, 7, 1298-1307.	17.4	128
3	Are Perovskite Solar Cell Potentialâ€Induced Degradation Proof?. Solar Rrl, 2022, 6, .	5.8	14
4	27.9% Efficient Monolithic Perovskite/Silicon Tandem Solar Cells on Industry Compatible Bottom Cells. Solar Rrl, 2021, 5, 2100244.	5.8	59
5	Subcell Operation and Longâ€Term Stability Analysis of Perovskiteâ€Based Tandem Solar Cells Using a Bichromatic Light Emitting Diode Light Source. Solar Rrl, 2021, 5, 2100311.	5.8	9
6	Co-Evaporated p-i-n Perovskite Solar Cells beyond 20% Efficiency: Impact of Substrate Temperature and Hole-Transport Layer. ACS Applied Materials & Interfaces, 2020, 12, 39261-39272.	8.0	79
7	Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science, 2020, 370, 1300-1309.	12.6	1,120
8	Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency. Advanced Energy Materials, 2020, 10, 1904102.	19.5	321
9	Perovskite Solar Cells go Outdoors: Field Testing and Temperature Effects on Energy Yield. Advanced Energy Materials, 2020, 10, 2000454.	19.5	86
10	Proton Radiation Hardness of Perovskite Tandem Photovoltaics. Joule, 2020, 4, 1054-1069.	24.0	104
11	From the lab to roof top applications: outdoor performance, temperature behavior and energy yield of perovskite solar cells. , 2020, , .		1
12	From Bulk to Surface: Sodium Treatment Reduces Recombination at the Nickel Oxide/Perovskite Interface. Advanced Materials Interfaces, 2019, 6, 1900789.	3.7	45
13	21.6%-Efficient Monolithic Perovskite/Cu(In,Ga)Se ₂ Tandem Solar Cells with Thin Conformal Hole Transport Layers for Integration on Rough Bottom Cell Surfaces. ACS Energy Letters, 2019, 4, 583-590.	17.4	155
14	Highly efficient monolithic perovskite silicon tandem solar cells: analyzing the influence of current mismatch on device performance. Sustainable Energy and Fuels, 2019, 3, 1995-2005.	4.9	208
15	Low Temperature Synthesis of Stable γâ€CsPbI ₃ Perovskite Layers for Solar Cells Obtained by High Throughput Experimentation. Advanced Energy Materials, 2019, 9, 1900555.	19.5	108
16	All-Thin-Film Tandem Cells Based on Liquid Phase Crystallized Silicon and Perovskites. IEEE Journal of Photovoltaics, 2019, 9, 621-628.	2.5	10
17	Efficient minority carrier detrapping mediating the radiation hardness of triple-cation perovskite solar cells under proton irradiation. Energy and Environmental Science, 2019, 12, 1634-1647.	30.8	89
18	Highly efficient monolithic perovskite/CIGSe tandem solar cells on rough bottom cell surfaces. , 2019, , .		1

Marko JoÅit

#	Article	IF	CITATIONS
19	Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy and Environmental Science, 2019, 12, 3356-3369.	30.8	519
20	Plasma-assisted atomic layer deposition of nickel oxide as hole transport layer for hybrid perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 12532-12543.	5.5	80
21	Improving Monolithic Perovskite/Silicon Tandem Solar Cells From an Optical Viewpoint. , 2019, , .		1
22	Observation of PbI <inf>2</inf> Residuals after P2 Nanosecond Laser Ablation of Perovskite Absorber Layers. , 2018, , .		2
23	Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield. Energy and Environmental Science, 2018, 11, 3511-3523.	30.8	281
24	Selfâ€Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1801892.	19.5	172
25	Infrared photocurrent management in monolithic perovskite/silicon heterojunction tandem solar cells by using a nanocrystalline silicon oxide interlayer. Optics Express, 2018, 26, A487.	3.4	48
26	Cs <i>_x</i> FA _{1–<i>x</i>} Pb(I _{1–<i>y</i>} Br <i>_y</i>) _{3 Perovskite Compositions: the Appearance of Wrinkled Morphology and its Impact on Solar Cell Performance. Journal of Physical Chemistry C, 2018, 122, 17123-17135.}	3 3.1	42
27	Evidence of PbI ₂ -Containing Debris Upon P2 Nanosecond Laser Patterning of Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 1244-1251.	2.5	13
28	Efficient Light Management by Textured Nanoimprinted Layers for Perovskite Solar Cells. ACS Photonics, 2017, 4, 1232-1239.	6.6	103
29	Efficiency limits in photovoltaics: Case of single junction solar cells. Facta Universitatis - Series Electronics and Energetics, 2014, 27, 631-638.	0.9	5

30 Subcell analysis in tandem solar cells using bichromatic light source. , 0, , .

0