Marko JoÅ;t

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8499725/publications.pdf

Version: 2024-02-01

30 papers

3,815 citations

394286 19 h-index 26 g-index

31 all docs

31 does citations

times ranked

31

3585 citing authors

#	Article	IF	CITATIONS
1	Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science, 2020, 370, 1300-1309.	6.0	1,120
2	Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy and Environmental Science, 2019, 12, 3356-3369.	15.6	519
3	Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency. Advanced Energy Materials, 2020, 10, 1904102.	10.2	321
4	Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield. Energy and Environmental Science, 2018, 11, 3511-3523.	15.6	281
5	Highly efficient monolithic perovskite silicon tandem solar cells: analyzing the influence of current mismatch on device performance. Sustainable Energy and Fuels, 2019, 3, 1995-2005.	2.5	208
6	Selfâ€Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1801892.	10.2	172
7	21.6%-Efficient Monolithic Perovskite/Cu(In,Ga)Se ₂ Tandem Solar Cells with Thin Conformal Hole Transport Layers for Integration on Rough Bottom Cell Surfaces. ACS Energy Letters, 2019, 4, 583-590.	8.8	155
8	Perovskite/CIGS Tandem Solar Cells: From Certified 24.2% toward 30% and Beyond. ACS Energy Letters, 2022, 7, 1298-1307.	8.8	128
9	Low Temperature Synthesis of Stable γ sPbl ₃ Perovskite Layers for Solar Cells Obtained by High Throughput Experimentation. Advanced Energy Materials, 2019, 9, 1900555.	10.2	108
10	Proton Radiation Hardness of Perovskite Tandem Photovoltaics. Joule, 2020, 4, 1054-1069.	11.7	104
11	Efficient Light Management by Textured Nanoimprinted Layers for Perovskite Solar Cells. ACS Photonics, 2017, 4, 1232-1239.	3.2	103
12	Efficient minority carrier detrapping mediating the radiation hardness of triple-cation perovskite solar cells under proton irradiation. Energy and Environmental Science, 2019, 12, 1634-1647.	15.6	89
13	Perovskite Solar Cells go Outdoors: Field Testing and Temperature Effects on Energy Yield. Advanced Energy Materials, 2020, 10, 2000454.	10.2	86
14	Plasma-assisted atomic layer deposition of nickel oxide as hole transport layer for hybrid perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 12532-12543.	2.7	80
15	Co-Evaporated p-i-n Perovskite Solar Cells beyond 20% Efficiency: Impact of Substrate Temperature and Hole-Transport Layer. ACS Applied Materials & Samp; Interfaces, 2020, 12, 39261-39272.	4.0	79
16	27.9% Efficient Monolithic Perovskite/Silicon Tandem Solar Cells on Industry Compatible Bottom Cells. Solar Rrl, 2021, 5, 2100244.	3.1	59
17	Infrared photocurrent management in monolithic perovskite/silicon heterojunction tandem solar cells by using a nanocrystalline silicon oxide interlayer. Optics Express, 2018, 26, A487.	1.7	48
18	From Bulk to Surface: Sodium Treatment Reduces Recombination at the Nickel Oxide/Perovskite Interface. Advanced Materials Interfaces, 2019, 6, 1900789.	1.9	45

#	Article	IF	CITATIONS
19	Cs <i>>_x</i> FA _{1â€"<i>x</i>} Pb(l _{1â€"<i>y</i>} Br <i>_y</i>) _{3 Perovskite Compositions: the Appearance of Wrinkled Morphology and its Impact on Solar Cell Performance. Journal of Physical Chemistry C, 2018, 122, 17123-17135.}	3	42
20	Are Perovskite Solar Cell Potentialâ€Induced Degradation Proof?. Solar Rrl, 2022, 6, .	3.1	14
21	Evidence of Pbl ₂ -Containing Debris Upon P2 Nanosecond Laser Patterning of Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 1244-1251.	1.5	13
22	All-Thin-Film Tandem Cells Based on Liquid Phase Crystallized Silicon and Perovskites. IEEE Journal of Photovoltaics, 2019, 9, 621-628.	1.5	10
23	Subcell Operation and Longâ€Term Stability Analysis of Perovskiteâ€Based Tandem Solar Cells Using a Bichromatic Light Emitting Diode Light Source. Solar Rrl, 2021, 5, 2100311.	3.1	9
24	Energy yield of perovskite solar cells: Influence of location, orientation, and external light management. Solar Energy Materials and Solar Cells, 2022, 234, 111421.	3.0	9
25	Efficiency limits in photovoltaics: Case of single junction solar cells. Facta Universitatis - Series Electronics and Energetics, 2014, 27, 631-638.	0.6	5
26	Observation of Pbl <inf>2</inf> Residuals after P2 Nanosecond Laser Ablation of Perovskite Absorber Layers. , 2018, , .		2
27	Highly efficient monolithic perovskite/CIGSe tandem solar cells on rough bottom cell surfaces. , 2019, , .		1
28	Improving Monolithic Perovskite/Silicon Tandem Solar Cells From an Optical Viewpoint. , 2019, , .		1
29	From the lab to roof top applications: outdoor performance, temperature behavior and energy yield of perovskite solar cells. , 2020, , .		1
30	Subcell analysis in tandem solar cells using bichromatic light source., 0,,.		0