
Jesse G Meyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8499353/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Large-Scale Multi-omic Analysis of COVID-19 Severity. Cell Systems, 2021, 12, 23-40.e7.	2.9	438
2	The Mitochondrial Acylome Emerges: Proteomics, Regulation by Sirtuins, and Metabolic and Disease Implications. Cell Metabolism, 2018, 27, 497-512.	7.2	241
3	Dietary Sugars Alter Hepatic Fatty Acid Oxidation via Transcriptional and Post-translational Modifications of Mitochondrial Proteins. Cell Metabolism, 2019, 30, 735-753.e4.	7.2	136
4	Regulation of UCP1 and Mitochondrial Metabolism in Brown Adipose Tissue by Reversible Succinylation. Molecular Cell, 2019, 74, 844-857.e7.	4.5	123
5	Clinical applications of quantitative proteomics using targeted and untargeted data-independent acquisition techniques. Expert Review of Proteomics, 2017, 14, 419-429.	1.3	114
6	Site-specific identification and quantitation of endogenous SUMO modifications under native conditions. Nature Communications, 2017, 8, 1171.	5.8	92
7	Identification of Novel Protein Lysine Acetyltransferases in Escherichia coli. MBio, 2018, 9, .	1.8	86
8	Protein Turnover in Aging and Longevity. Proteomics, 2018, 18, e1700108.	1.3	78
9	Quantification of Lysine Acetylation and Succinylation Stoichiometry in Proteins Using Mass Spectrometric Data-Independent Acquisitions (SWATH). Journal of the American Society for Mass Spectrometry, 2016, 27, 1758-1771.	1.2	73
10	Learning Drug Functions from Chemical Structures with Convolutional Neural Networks and Random Forests. Journal of Chemical Information and Modeling, 2019, 59, 4438-4449.	2.5	61
11	Expanding Proteome Coverage with Orthogonal-specificity α-Lytic Proteases. Molecular and Cellular Proteomics, 2014, 13, 823-835.	2.5	54
12	Charge State Coalescence During Electrospray Ionization Improves Peptide Identification by Tandem Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2012, 23, 1390-1399.	1.2	52
13	PIQED: automated identification and quantification of protein modifications from DIA-MS data. Nature Methods, 2017, 14, 646-647.	9.0	52
14	Quantitative shotgun proteome analysis by direct infusion. Nature Methods, 2020, 17, 1222-1228.	9.0	48
15	Deep learning neural network tools for proteomics. Cell Reports Methods, 2021, 1, 100003.	1.4	48
16	Temporal dynamics of liver mitochondrial protein acetylation and succinylation and metabolites due to high fat diet and/or excess glucose or fructose. PLoS ONE, 2018, 13, e0208973.	1.1	38
17	SUCLA2 mutations cause global protein succinylation contributing to the pathomechanism of a hereditary mitochondrial disease. Nature Communications, 2020, 11, 5927.	5.8	35
18	Simultaneous Quantification of the Acetylome and Succinylome by â€~Oneâ€Pot' Affinity Enrichment. Proteomics, 2018, 18, e1800123.	1.3	31

JESSE G MEYER

#	Article	IF	CITATIONS
19	Proteome and Secretome Dynamics of Human Retinal Pigment Epithelium in Response to Reactive Oxygen Species. Scientific Reports, 2019, 9, 15440.	1.6	22
20	Peptide Correlation Analysis (PeCorA) Reveals Differential Proteoform Regulation. Journal of Proteome Research, 2021, 20, 1972-1980.	1.8	22
21	Qualitative and Quantitative Shotgun Proteomics Data Analysis from Data-Dependent Acquisition Mass Spectrometry. Methods in Molecular Biology, 2021, 2259, 297-308.	0.4	19
22	Fast Proteome Identification and Quantification from Data-Dependent Acquisition–Tandem Mass Spectrometry (DDA MS/MS) Using Free Software Tools. Methods and Protocols, 2019, 2, 8.	0.9	18
23	Positional SHAP (PoSHAP) for Interpretation of machine learning models trained from biological sequences. PLoS Computational Biology, 2022, 18, e1009736.	1.5	17
24	High-Resolution Mass Spectrometry to Identify and Quantify Acetylation Protein Targets. Methods in Molecular Biology, 2019, 1983, 3-16.	0.4	15
25	<i>In Silico</i> Proteome Cleavage Reveals Iterative Digestion Strategy for High Sequence Coverage. ISRN Computational Biology, 2014, 2014, 1-7.	0.3	12
26	Quantification of Site-specific Protein Lysine Acetylation and Succinylation Stoichiometry Using Data-independent Acquisition Mass Spectrometry. Journal of Visualized Experiments, 2018, , .	0.2	9
27	Glycemic Control in Adult Surgical Patients Receiving Regular Insulin Added to Parenteral Nutrition vs Insulin Glargine: A Retrospective Chart Review. Nutrition in Clinical Practice, 2019, 34, 775-782.	1.1	8
28	CsoDIAq Software for Direct Infusion Shotgun Proteome Analysis. Analytical Chemistry, 2021, 93, 12312-12319.	3.2	8
29	Rapid Targeted Quantitation of Protein Overexpression with Direct Infusion Shotgun Proteome Analysis (DISPA-PRM). Analytical Chemistry, 2022, 94, 1965-1973.	3.2	8
30	Sirt5 Plays a Critical Role in Mitochondrial Protein Acylation and Mitochondrial Metabolic Homeostasis in Brown Fat. Diabetes, 2018, 67, .	0.3	2
31	Excess Dietary Fat And Sugar Fight It Out In The Liver. , 2019, , .		0
32	EpyNN: Educational python for Neural Networks. SoftwareX, 2022, 19, 101140.	1.2	0