Lyda Patricia Sabogal Paz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8499314/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Land use influence on raw surface water quality and treatment costs for drinking supply in São Paulo State (Brazil). Ecological Engineering, 2016, 94, 516-524.	3.6	60
2	Household slow sand filters in intermittent and continuous flows to treat water containing low mineral ion concentrations and Bisphenol A. Science of the Total Environment, 2020, 702, 135078.	8.0	37
3	Microcystis aeruginosa and microcystin-LR removal by household slow sand filters operating in continuous and intermittent flows. Water Research, 2019, 150, 29-39.	11.3	36
4	Household slow sand filter to treat groundwater with microbiological risks in rural communities. Water Research, 2020, 186, 116352.	11.3	29
5	Drinking water treatment by multistage filtration on a household scale: Efficiency and challenges. Water Research, 2020, 178, 115816.	11.3	25
6	A critical overview of household slow sand filters for water treatment. Water Research, 2022, 208, 117870.	11.3	25
7	Household slow sand filters with and without water level control: continuous and intermittent flow efficiencies. Environmental Technology (United Kingdom), 2020, 41, 944-958.	2.2	20
8	Removal of Giardia spp. and Cryptosporidium spp. from water supply with high turbidity: analytical challenges and perspectives. Journal of Water and Health, 2016, 14, 369-378.	2.6	18
9	Cryptosporidium spp. and Giardia spp. (oo)cysts as target-organisms in sanitation and environmental monitoring: A review in microscopy-based viability assays. Water Research, 2021, 189, 116590.	11.3	15
10	Pretreatment using <i>Opuntia cochenillifera</i> followed by household slow sand filters: technological alternatives for supplying isolated communities. Environmental Technology (United) Tj ETQq0 0 0 r	g B T2/Over	lo ¢h 10 Tf 50
11	Performance comparison of three methods for detection of Giardia spp. cysts and Cryptosporidium spp. oocysts in drinking-water treatment sludge. Environmental Monitoring and Assessment, 2018, 190, 686.	2.7	13
12	Coagulation, flocculation, dissolved air flotation and filtration in the removal of <i>Giardia</i> spp. and <i>Cryptosporidium</i> spp. from water supply. Environmental Technology (United Kingdom), 2019, 40, 654-663.	2.2	13
13	Filter media depth and its effect on the efficiency of Household Slow Sand Filter in continuous flow. Journal of Environmental Management, 2021, 288, 112412.	7.8	12
14	Exploring Potentials and Constraints of H2O2 Water Disinfection for Household Settings. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	9
15	Evaluation of a multi-barrier household system as an alternative to surface water treatment with microbiological risks. Environmental Technology (United Kingdom), 2022, 43, 3401-3413.	2.2	8
16	Uso de modelação matemática para projeto de câmaras mecanizadas de floculação em série em estaÃ de tratamento de água. Engenharia Sanitaria E Ambiental, 2005, 10, 82-90.	§Ãµes	8
17	Detection and alkaline inactivation of Cryptosporidium spp. oocysts and Giardia spp. cysts in drinking-water treatment sludge. Journal of Water Process Engineering, 2021, 40, 101939.	5.6	7
18	Conceptualising global water challenges: A transdisciplinary approach for understanding different discourses in sustainable development. Journal of Environmental Management, 2021, 298, 113361.	7.8	7

#	Article	IF	CITATIONS
19	Label-Free Darkfield-Based Technique to Assist in the Detection of Giardia Cysts. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	6
20	Household slow sand filters in continuous and intermittent flows and their efficiency in microorganism's removal from river water. Environmental Technology (United Kingdom), 2022, 43, 1583-1592.	2.2	6
21	<i>Giardia</i> spp. cysts and <i>Cryptosporidium</i> spp. oocysts in drinking water treatment residues: comparison of recovery methods for quantity assessment. Environmental Technology (United Kingdom), 2021, 42, 1-10.	2.2	6
22	Household slow sand filter efficiency with <i>schmutzdecke</i> evaluation by microsensors. Environmental Technology (United Kingdom), 2022, 43, 4042-4053.	2.2	6
23	Biological Layer in Household Slow Sand Filters: Characterization and Evaluation of the Impact on Systems Efficiency. Water (Switzerland), 2022, 14, 1078.	2.7	6
24	Ripening of household slow sand filter by adding fish food. Journal of Water Sanitation and Hygiene for Development, 2020, 10, 76-85.	1.8	4
25	Does each bead count? A reduced-cost approach for recovering waterborne protozoa from challenge water using immunomagnetic separation. Journal of Water and Health, 2021, 19, 436-447.	2.6	4
26	Detection of <i>Cryptosporidium Parvum</i> Oocysts in Artificially Contaminated Filter Backwash Water and Ozone Treatment at Pilot Scale. Ozone: Science and Engineering, 2022, 44, 426-437.	2.5	4
27	Household slow sand filters operating in continuous and intermittent flows: Computational fluid dynamics simulation and validation by tracer experiments. Chemical Engineering Science, 2022, 247, 117058.	3.8	4
28	Hydrogen peroxide-assisted pasteurization: An alternative for household water disinfection. Journal of Cleaner Production, 2022, 357, 131958.	9.3	4
29	Analytical challenges and perspectives of assessing viability of <i>Giardia muris</i> cysts and <i>Cryptosporidium parvum</i> oocysts by live/dead simultaneous staining. Environmental Technology (United Kingdom), 2022, 43, 60-69.	2.2	3
30	Filter Backwash Water and Floated Residue Containing Pathogenic Protozoa: Detection Method and Treatment Alternatives. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	3
31	Ferric sulphate flocculation as a concentration method for Giardia and Cryptosporidium in filter backwash water. Water Practice and Technology, 2021, 16, 557-565.	2.0	3
32	<i>In-situ</i> microscopy investigation of floc development during coagulation-flocculation with chemical and natural coagulants. Separation Science and Technology, 0, , 1-11.	2.5	3
33	Avaliação técnico-econômica da tecnologia de tratamento de água de dupla filtração. Engenharia Sanitaria E Ambiental, 2015, 20, 525-532.	0.5	2
34	Electroanalytical properties of chlorophenol red at disposable carbon electrodes: Implications for Escherichia coli detection. Bioelectrochemistry, 2019, 130, 107321.	4.6	2
35	Detection of Giardia and Cryptosporidium in environmental matrices with immunomagnetic separation: two or three acid dissociations. Parasitology Research, 2021, 120, 629-635.	1.6	2
36	Effects of hydrogen peroxide preoxidation on clarification and reduction of the microbial load of groundwater and surface water sources for household treatment. Water Science and Technology: Water Supply, 2022, 22, 2977-2987.	2.1	2

#	Article	IF	CITATIONS
37	Direct centrifugation for detecting <i>Giardia</i> spp. cysts in filter backwash water. Journal of Water Sanitation and Hygiene for Development, 2022, 12, 475-484.	1.8	2
38	Visibility Graph Analysis of Particle Size Distribution During Flocculation for Water Treatment. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	1
39	Label-free detection and enumeration of Giardia cysts in agitated suspensions using in situ microscopy. Journal of Microbiological Methods, 2022, 199, 106509.	1.6	1