George Karypis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8499233/publications.pdf

Version: 2024-02-01

219 papers 30,323 citations

38 h-index 100 g-index

260 all docs

 $\begin{array}{c} 260 \\ \\ \text{docs citations} \end{array}$

times ranked

260

17874 citing authors

#	Article	IF	CITATIONS
1	A knowledge graph of clinical trials (\$\$mathop {mathtt {CTKG}}limits\$\$). Scientific Reports, 2022, 12, 4724.	3.3	6
2	Trust Your Neighbors: A Comprehensive Survey of Neighborhood-Based Methods for Recommender Systems., 2022,, 39-89.		5
3	Scalable Label Propagation for Multi-relational Learning on the Tensor Product of Graphs. IEEE Transactions on Knowledge and Data Engineering, 2021, , 1-1.	5.7	1
4	Kernelized Multitask Learning Method for Personalized Signaling Adverse Drug Reactions. IEEE Transactions on Knowledge and Data Engineering, 2021 , , 1 - 1 .	5.7	2
5	Position-based Hash Embeddings For Scaling Graph Neural Networks. , 2021, , .		1
6	Distant-Supervised Slot-Filling for E-Commerce Queries. , 2021, , .		4
7	Learning Graph Neural Networks with Deep Graph Library. , 2020, , .		11
8	DGL-KE., 2020,,.		83
9	Deep Graph Library: Overview, Updates, and Future Developments [GrAPL 2020 Keynote Speaker]., 2020,,		O
10	Boosting Item-based Collaborative Filtering via Nearly Uncoupled Random Walks. ACM Transactions on Knowledge Discovery From Data, 2020, 14, 1-26.	3.5	9
11	DistDGL: Distributed Graph Neural Network Training for Billion-Scale Graphs. , 2020, , .		83
12	Heterogeneous Molecular Graph Neural Networks for Predicting Molecule Properties. , 2020, , .		23
13	Learning from Sets of Items in Recommender Systems. ACM Transactions on Interactive Intelligent Systems, 2019, 9, 1-26.	3.7	8
14	Personalized diffusions for top-n recommendation. , 2019, , .		7
15	Causal Inference in Higher Education. , 2019, , .		1
16	A 2D Parallel Triangle Counting Algorithm for Distributed-Memory Architectures. , 2019, , .		7
17	Structured Dictionary Learning for Energy Disaggregation. , 2019, , .		4
18	Adaptive matrix completion for the users and the items in tail. , 2019, , .		8

#	Article	IF	Citations
19	Feature Extraction for Next-Term Prediction of Poor Student Performance. IEEE Transactions on Learning Technologies, 2019, 12, 237-248.	3.2	39
20	A Study on Curriculum Planning and Its Relationship with Graduation GPA and Time To Degree. , 2019, , .		11
21	UPM., 2019,,.		1
22	RecWalk., 2019,,.		50
23	Streaming and Batch Algorithms for Truss Decomposition. , 2019, , .		3
24	Intent Term Weighting in E-commerce Queries., 2019,,.		3
25	Parallel cosine nearest neighbor graph construction. Journal of Parallel and Distributed Computing, 2019, 129, 61-82.	4.1	1
26	NSF BIGDATA PI Meeting - Domain-Specific Research Directions and Data Sets. SIGMOD Record, 2019, 47, 32-35.	1.2	2
27	Recent Advances in Recommender Systems. , 2018, , .		1
28	A virtual memory manager optimized for node-level cooperative multi-tasking in memory constrained systems. International Journal of High Performance Computing Applications, 2018, 32, 744-759.	3.7	0
29	HPC formulations of optimization algorithms for tensor completion. Parallel Computing, 2018, 74, 99-117.	2.1	8
30	Detecting significant genotype–phenotype association rules in bipolar disorder: market research meets complex genetics. International Journal of Bipolar Disorders, 2018, 6, 24.	2.2	8
31	Text Segmentation on Multilabel Documents: A Distant-Supervised Approach. , 2018, , .		6
32	Local Latent Space Models for Top-N Recommendation. , 2018, , .		21
33	Streaming Tensor Factorization for Infinite Data Sources. , 2018, , 81-89.		20
34	Document Clustering. , 2018, , 1231-1236.		0
35	Scalability and Distribution of Collaborative Recommenders. , 2018, , 369-404.		0
36	Accounting for Language Changes Over Time in Document Similarity Search. ACM Transactions on Information Systems, 2017, 35, 1-26.	4.9	6

#	Article	IF	CITATIONS
37	Context-Aware Recommendation-Based Learning Analytics Using Tensor and Coupled Matrix Factorization. IEEE Journal on Selected Topics in Signal Processing, 2017, 11, 729-741.	10.8	38
38	Efficient identification of Tanimoto nearest neighbors. International Journal of Data Science and Analytics, 2017, 4, 153-172.	4.1	13
39	Accelerating the Tucker Decomposition with Compressed Sparse Tensors. Lecture Notes in Computer Science, 2017, , 653-668.	1.3	30
40	Cumulative Knowledge-based Regression Models for Next-term Grade Prediction., 2017,, 552-560.		14
41	Improving Higher Education. , 2017, , .		6
42	Sparse Tensor Factorization on Many-Core Processors with High-Bandwidth Memory. , 2017, , .		20
43	Enriching Course-Specific Regression Models with Content Features for Grade Prediction. , 2017, , .		9
44	Constrained Tensor Factorization with Accelerated AO-ADMM., 2017,,.		17
45	Truss decomposition on shared-memory parallel systems. , 2017, , .		38
46	Exploring optimizations on shared-memory platforms for parallel triangle counting algorithms. , 2017, , .		20
47	An Exploration of Optimization Algorithms for High Performance Tensor Completion. , 2016, , .		17
48	Efficient Identification of Tanimoto Nearest Neighbors. , 2016, , .		3
49	Fast Parallel Cosine K-Nearest Neighbor Graph Construction. , 2016, , .		6
50	Predicting Student Performance Using Personalized Analytics. Computer, 2016, 49, 61-69.	1.1	115
51	Mining Evolving Patterns in Dynamic Relational Networks. , 2016, , 485-532.		0
52	Grade Prediction with Course and Student Specific Models. Lecture Notes in Computer Science, 2016, , 89-101.	1.3	24
53	Local Item-Item Models For Top-N Recommendation. , 2016, , .		72
54	Grade prediction with models specific to students and courses. International Journal of Data Science and Analytics, 2016, 2, 159-171.	4.1	55

#	Article	IF	CITATIONS
55	A Parallel Hill-Climbing Refinement Algorithm for Graph Partitioning. , 2016, , .		27
56	Augmenting Chinese hamster genome assembly by identifying regions of high confidence. Biotechnology Journal, 2016, 11 , 1151 - 1157 .	3.5	11
57	Domain-Aware Grade Prediction and Top-n Course Recommendation. , 2016, , .		57
58	A Medium-Grained Algorithm for Sparse Tensor Factorization. , 2016, , .		29
59	Tensor-matrix products with a compressed sparse tensor. , 2015, , .		82
60	Understanding computer usage evolution. , 2015, , .		2
61	Improving graph partitioning for modern graphs and architectures. , 2015, , .		28
62	Feature-based factorized Bilinear Similarity Model for Cold-Start Top- <i>n</i> Item Recommendation. , 2015, , .		18
63	A Memory Management System Optimized for BDMPI's Memory and Execution Model. , 2015, , .		0
64	PL2AP., 2015,,.		4
65	Recent Advances in Recommender Systems and Future Directions. Lecture Notes in Computer Science, 2015, , 3-9.	1.3	4
66	Algorithms for Mining the Coevolving Relational Motifs in Dynamic Networks. ACM Transactions on Knowledge Discovery From Data, 2015, 10, 1-31.	3.5	10
67	User-Specific Feature-Based Similarity Models for Top- <i>n</i> Recommendation of New Items. ACM Transactions on Intelligent Systems and Technology, 2015, 6, 1-20.	4.5	40
68	SPLATT: Efficient and Parallel Sparse Tensor-Matrix Multiplication. , 2015, , .		137
69	Collaborative multi-regression models for predicting students' performance in course activities. , 2015, , .		53
70	Efficient Nested Dissection for Multicore Architectures. Lecture Notes in Computer Science, 2015, , 467-478.	1.3	32
71	A Comprehensive Survey of Neighborhood-Based Recommendation Methods. , 2015, , 37-76.		187
72	Multi-threaded modularity based graph clustering using the multilevel paradigm. Journal of Parallel and Distributed Computing, 2015, 76, 66-80.	4.1	34

#	Article	IF	Citations
73	L2Knng., 2015,,.		19
74	Signaling adverse drug reactions with novel feature-based similarity model. , 2014, , .		7
75	Memory-efficient parallel computation of tensor and matrix products for big tensor decomposition. , 2014, , .		24
76	MPI for Big Data: New tricks for an old dog. Parallel Computing, 2014, 40, 754-767.	2.1	11
77	L2AP: Fast cosine similarity search with prefix L-2 norm bounds. , 2014, , .		26
78	NLMF: NonLinear Matrix Factorization Methods for Top-N Recommender Systems. , 2014, , .		8
79	Opportunities for data-driven cloud-based mobile optimization. , 2014, , .		0
80	Big Data Frequent Pattern Mining. , 2014, , 225-259.		21
81	Welcome from DSAA 2014 chairs. , 2014, , .		0
82	HOSLIM: Higher-Order Sparse Linear Method for Top-N Recommender Systems. Lecture Notes in Computer Science, 2014, , 38-49.	1.3	31
83	FISM., 2013, , .		458
84	Pareto Optimal Pairwise Sequence Alignment. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2013, 10, 481-493.	3.0	14
85	A segment-based approach to clustering multi-topic documents. Knowledge and Information Systems, 2013, 34, 563-595.	3.2	38
86	A novel two-box search paradigm for query disambiguation. World Wide Web, 2013, 16, 1-29.	4.0	10
87	Multi-threaded Graph Partitioning. , 2013, , .		86
88	BDMPI., 2013,,.		1
89	A Versatile Graph-Based Approach to Package Recommendation. , 2013, , .		14
90	Sparse linear methods with side information for Top-N recommendations. , 2012, , .		5

#	Article	IF	CITATIONS
91	Sparse linear methods with side information for top-n recommendations., 2012,,.		78
92	Algorithms for mining the evolution of conserved relational states in dynamic networks. Knowledge and Information Systems, 2012, 33, 603-630.	3.2	32
93	Multivariate analysis of cell culture bioprocess dataâ€"Lactate consumption as process indicator. Journal of Biotechnology, 2012, 162, 210-223.	3.8	144
94	Improved Machine Learning Models for Predicting Selective Compounds. Journal of Chemical Information and Modeling, 2012, 52, 38-50.	5.4	20
95	Computational tools for protein–DNA interactions. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2012, 2, 14-28.	6.8	11
96	Multi-view learning via probabilistic latent semantic analysis. Information Sciences, 2012, 199, 20-30.	6.9	34
97	SLIM: Sparse Linear Methods for Top-N Recommender Systems. , 2011, , .		416
98	Algorithms for Mining the Evolution of Conserved Relational States in Dynamic Networks. , 2011, , .		12
99	A Comprehensive Survey of Neighborhood-based Recommendation Methods. , 2011, , 107-144.		337
100	Discerning key parameters influencing high productivity and quality through recognition of patterns in process data. BMC Proceedings, 2011, 5, P91.	1.6	2
101	In silico structureâ€activityâ€relationship (SAR) models from machine learning: a review. Drug Development Research, 2011, 72, 138-146.	2.9	9
102	Automatic detection of vaccine adverse reactions by incorporating historical medical conditions, , $2011, \ldots$		0
103	Improved machine learning models for predicting selective compounds., 2011,,.		0
104	A Statistical Model for Topically Segmented Documents. Lecture Notes in Computer Science, 2011, , 247-261.	1.3	1
105	TOPTMH: TOPOLOGY PREDICTOR FOR TRANSMEMBRANE α-HELICES. Journal of Bioinformatics and Computational Biology, 2010, 08, 39-57.	0.8	6
106	Trends in Chemical Graph Data Mining. The Kluwer International Series on Advances in Database Systems, 2010, , 581-606.	1.1	10
107	Assessing Synthetic Accessibility of Chemical Compounds Using Machine Learning Methods. Journal of Chemical Information and Modeling, 2010, 50, 979-991.	5.4	46
108	Content-Based Methods for Predicting Web-Site Demographic Attributes. , 2010, , .		18

#	Article	IF	CITATIONS
109	A Novel Approach to Compute Similarities and Its Application to Item Recommendation. Lecture Notes in Computer Science, 2010, , 39-51.	1.3	8
110	Enhancing link-based similarity through the use of non-numerical labels and prior information. , 2010, , .		2
111	LIBRUS: combined machine learning and homology information for sequence-based ligand-binding residue prediction. Bioinformatics, 2009, 25, 3099-3107.	4.1	25
112	svm PRAT: SVM-based Protein Residue Annotation Toolkit. BMC Bioinformatics, 2009, 10, 439.	2.6	26
113	CONTOUR: an efficient algorithm for discovering discriminating subsequences. Data Mining and Knowledge Discovery, 2009, 18, 1-29.	3.7	13
114	Improved estimation of structure predictor quality. BMC Structural Biology, 2009, 9, 41.	2.3	2
115	Multi-Assay-Based Structureâ^'Activity Relationship Models: Improving Structureâ^'Activity Relationship Models by Incorporating Activity Information from Related Targets. Journal of Chemical Information and Modeling, 2009, 49, 2444-2456.	5.4	37
116	Common Pharmacophore Identification Using Frequent Clique Detection Algorithm. Journal of Chemical Information and Modeling, 2009, 49, 13-21.	5 . 4	33
117	Target Fishing for Chemical Compounds Using Target-Ligand Activity Data and Ranking Based Methods. Journal of Chemical Information and Modeling, 2009, 49, 2190-2201.	5. 4	65
118	The Set Classification Problem and Solution Methods. , 2009, , .		7
119	Document Clustering. , 2009, , 933-937.		O
120	Comparison of descriptor spaces for chemical compound retrieval and classification. Knowledge and Information Systems, 2008, 14, 347-375.	3.2	231
121	<i>f</i> RMSDPred: Predicting local RMSD between structural fragments using sequence information. Proteins: Structure, Function and Bioinformatics, 2008, 72, 1005-1018.	2.6	16
122	Conserved GU-Rich Elements Mediate mRNA Decay by Binding to CUG-Binding Protein 1. Molecular Cell, 2008, 29, 263-270.	9.7	216
123	Genome Alignments Using MPI-LAGAN. , 2008, , .		O
124	The Set Classification Problem and Solution Methods. , 2008, , .		6
125	Indirect Similarity Based Methods for Effective Scaffold-Hopping in Chemical Compounds. Journal of Chemical Information and Modeling, 2008, 48, 730-741.	5.4	24
126	Architecture Aware Partitioning Algorithms. , 2008, , 42-53.		23

#	Article	IF	CITATIONS
127	IMPROVING HOMOLOGY MODELS FOR PROTEIN-LIGAND BINDING SITES., 2008, , .		5
128	Learning preferences of new users in recommender systems. SIGKDD Explorations: Newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining, 2008, 10, 90-100.	4.0	184
129	Improving homology models for protein-ligand binding sites. Computational Systems Bioinformatics / Life Sciences Society Computational Systems Bioinformatics Conference, 2008, 7, 211-22.	0.4	5
130	EFFECTIVE OPTIMIZATION ALGORITHMS FOR FRAGMENT-ASSEMBLY BASED PROTEIN STRUCTURE PREDICTION. Journal of Bioinformatics and Computational Biology, 2007, 05, 335-352.	0.8	3
131	Interleaving of Gate Sizing and Constructive Placement for Predictable Performance., 2007,,.		2
132	Incremental window-based protein sequence alignment algorithms. Bioinformatics, 2007, 23, e17-e23.	4.1	5
133	Out-of-core coherent closed quasi-clique mining from large dense graph databases. ACM Transactions on Database Systems, 2007, 32, 13.	2.8	68
134	A Multi-Level Parallel Implementation of a Program for Finding Frequent Patterns in a Large Sparse Graph., 2007,,.		19
135	Clustering methodologies for identifying country core competencies. Journal of Information Science, 2007, 33, 21-40.	3.3	17
136	METHODS FOR EFFECTIVE VIRTUAL SCREENING AND SCAFFOLD-HOPPING IN CHEMICAL COMPOUNDS. , 2007, , .		7
137	Data Mining in Bioinformatics (BIOKDD). Algorithms for Molecular Biology, 2007, 2, 4.	1.2	5
138	Discovering frequent geometric subgraphs. Information Systems, 2007, 32, 1101-1120.	3.6	25
139	Discriminating Subsequence Discovery for Sequence Clustering. , 2007, , .		10
140	$\mbox{\ensuremath{\mbox{\scriptsize ci}}}\mbox{\ensuremath{\mbox{\scriptsize fc/i}}}\mbox{\ensuremath{\mbox{\scriptsize RMSDPred:}}}\mbox{\ensuremath{\mbox{\scriptsize PREDICTING}}}\mbox{\ensuremath{\mbox{\scriptsize LOCAL}}}\mbox{\ensuremath{\mbox{\scriptsize RMSDPred:}}}\mbox{\ensuremath{\mbox{\scriptsize FRAGMENTS}}}\mbox{\ensuremath{\mbox{\scriptsize USING}}}\mbox{\ensuremath{\mbox{\scriptsize SEQUENCE}}}\mbox{\ensuremath{\mbox{\scriptsize INFORMATION.}}}\mbox{\ensuremath{\mbox{\scriptsize ci}}}\mbox{\ensuremath{\mbox{\scriptsize ci}}}\$		7
141	AN ANALYSIS OF INFORMATION CONTENT PRESENT IN PROTEIN-DNA INTERACTIONS., 2007,,.		2
142	Towards a Scalable kNN CF Algorithm: Exploring Effective Applications of Clustering., 2007, , 147-166.		8
143	fRMSDPred: predicting local RMSD between structural fragments using sequence information. Computational Systems Bioinformatics / Life Sciences Society Computational Systems Bioinformatics Conference, 2007, 6, 311-22.	0.4	2
144	Comparison of Descriptor Spaces for Chemical Compound Retrieval and Classification. IEEE International Conference on Data Mining, 2006, , .	0.0	154

#	Article	IF	CITATIONS
145	BIOKDD06. SIGKDD Explorations: Newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining, 2006, 8, 78-78.	4.0	O
146	Finding Topological Frequent Patterns from Graph Datasets. , 2006, , 117-158.		1
147	YASSPP: Better kernels and coding schemes lead to improvements in protein secondary structure prediction. Proteins: Structure, Function and Bioinformatics, 2006, 64, 575-586.	2.6	67
148	On efficiently summarizing categorical databases. Knowledge and Information Systems, 2006, 9, 19-37.	3.2	31
149	Building multiclass classifiers for remote homology detection and fold recognition. BMC Bioinformatics, 2006, 7, 455.	2.6	17
150	6. Partitioning and Load Balancing for Emerging Parallel Applications and Architectures. , 2006, , 99-126.		10
151	Coherent closed quasi-clique discovery from large dense graph databases. , 2006, , .		93
152	EFFECTIVE OPTIMIZATION ALGORITHMS FOR FRAGMENT-ASSEMBLY BASED PROTEIN STRUCTURE PREDICTION. , 2006, , .		2
153	Topic-driven Clustering for Document Datasets. , 2005, , .		27
154	HARMONY: Efficiently Mining the Best Rules for Classification. , 2005, , .		85
155	Influence in Ratings-Based Recommender Systems: An Algorithm-Independent Approach. , 2005, , .		46
156	Data Clustering in Life Sciences. Molecular Biotechnology, 2005, 31, 055-080.	2.4	81
157	Finding Frequent Patterns in a Large Sparse Graph*. Data Mining and Knowledge Discovery, 2005, 11, 243-271.	3.7	285
158	Hierarchical Clustering Algorithms for Document Datasets. Data Mining and Knowledge Discovery, 2005, 10, 141-168.	3.7	452
159	Finding Frequent Patterns Using Length-Decreasing Support Constraints. Data Mining and Knowledge Discovery, 2005, 10, 197-228.	3.7	27
160	GENE CLASSIFICATION USING EXPRESSION PROFILES: A FEASIBILITY STUDY. International Journal on Artificial Intelligence Tools, 2005, 14, 641-660.	1.0	30
161	Effective document clustering for large heterogeneous law firm collections. , 2005, , .		36
162	PREDICTION OF CONTACT MAPS USING SUPPORT VECTOR MACHINES. International Journal on Artificial Intelligence Tools, 2005, 14, 849-865.	1.0	8

#	Article	IF	CITATIONS
163	Profile-based direct kernels for remote homology detection and fold recognition. Bioinformatics, 2005, 21, 4239-4247.	4.1	145
164	Feature-based recommendation system. , 2005, , .		44
165	Frequent substructure-based approaches for classifying chemical compounds. IEEE Transactions on Knowledge and Data Engineering, 2005, 17, 1036-1050.	5.7	276
166	Finding Frequent Patterns in a Large Sparse Graph. , 2004, , .		56
167	BAMBOO: Accelerating Closed Itemset Mining by Deeply Pushing the Length-Decreasing Support Constraint., 2004,,.		8
168	Multi-resource aware partitioning algorithms for FPGAs with heterogeneous resources., 2004,,.		4
169	Efficient closed pattern mining in the presence of tough block constraints. , 2004, , .		30
170	Soft clustering criterion functions for partitional document clustering. , 2004, , .		14
171	Selective Markov models for predicting Web page accesses. ACM Transactions on Internet Technology, 2004, 4, 163-184.	4.4	283
172	Empirical and Theoretical Comparisons of Selected Criterion Functions for Document Clustering. Machine Learning, 2004, 55, 311-331.	5.4	463
173	Parallel tree-projection-based sequence mining algorithms. Parallel Computing, 2004, 30, 443-472.	2.1	46
174	An efficient algorithm for discovering frequent subgraphs. IEEE Transactions on Knowledge and Data Engineering, 2004, 16, 1038-1051.	5.7	231
175	Item-based top- N recommendation algorithms. ACM Transactions on Information Systems, 2004, 22, 143-177.	4.9	1,749
176	Multi-resource aware partitioning algorithms for FPGAs with heterogeneous resources. , 2004, , .		5
177	Predicting the Performance of Randomized Parallel Search: An Application to Robot Motion Planning. Journal of Intelligent and Robotic Systems: Theory and Applications, 2003, 38, 31-53.	3.4	2
178	Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2610-2615.	7.1	1,978
179	Perimeter-degree., 2003,,.		13
180	Intelligent metasearch engine for knowledge management. , 2003, , .		3

#	Article	lF	Citations
181	Multi-Constraint Mesh Partitioning for Contact/Impact Computations. , 2003, , .		21
182	Expert agreement and content based reranking in a meta search environment using Mearf., 2002,,.		25
183	Using conjunction of attribute values for classification. , 2002, , .		15
184	Multi-objective circuit partitioning for cutsize and path-based delay minimization. IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, 2002, , .	0.0	28
185	Evaluation of hierarchical clustering algorithms for document datasets. , 2002, , .		273
186	Parallel static and dynamic multi-constraint graph partitioning. Concurrency Computation Practice and Experience, 2002, 14, 219-240.	2.2	118
187	Efficient Parallel Algorithms for Mining Associations. Lecture Notes in Computer Science, 2002, , 83-126.	1.3	8
188	Evaluation of Techniques for Classifying Biological Sequences. Lecture Notes in Computer Science, 2002, , 417-431.	1.3	42
189	GRAPH PARTITIONING FOR DYNAMIC, ADAPTIVE AND MULTI-PHASE SCIENTIFIC SIMULATIONS. , 2002, , .		5
190	Item-based collaborative filtering recommendation algorithms. , 2001, , .		5,782
191	Text Categorization Using Weight Adjusted k-Nearest Neighbor Classification. Lecture Notes in Computer Science, 2001, , 53-65.	1.3	197
192	Evaluation of Item-Based Top-N Recommendation Algorithms. , 2001, , .		324
193	Multilevel algorithms for generating coarse grids for multigrid methods. , 2001, , .		27
194	Selective Markov Models for Predicting Web-Page Accesses. , 2001, , .		34
195	Multilevel k-way Hypergraph Partitioning. VLSI Design, 2000, 11, 285-300.	0.5	164
196	Fast supervised dimensionality reduction algorithm with applications to document categorization $\&$ retrieval. , 2000, , .		64
197	Analysis of recommendation algorithms for e-commerce. , 2000, , .		1,207
198	Parallel Multilevel Algorithms for Multi-constraint Graph Partitioning. Lecture Notes in Computer Science, 2000, , 296-310.	1.3	59

#	Article	IF	CITATIONS
199	Job scheduling in the presence of multiple resource requirements., 1999,,.		47
200	Multilevel k-way hypergraph partitioning. , 1999, , .		206
201	Document Categorization and Query Generation on the World Wide Web Using WebACE. Artificial Intelligence Review, 1999, 13, 365-391.	15.7	94
202	Chameleon: hierarchical clustering using dynamic modeling. Computer, 1999, 32, 68-75.	1.1	1,601
203	Partitioning-based clustering for Web document categorization. Decision Support Systems, 1999, 27, 329-341.	5.9	200
204	Parallel Multilevel series k-Way Partitioning Scheme for Irregular Graphs. SIAM Review, 1999, 41, 278-300.	9.5	283
205	Multilevel hypergraph partitioning: applications in VLSI domain. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 1999, 7, 69-79.	3.1	545
206	A Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering. Journal of Parallel and Distributed Computing, 1998, 48, 71-95.	4.1	354
207	Multilevelk-way Partitioning Scheme for Irregular Graphs. Journal of Parallel and Distributed Computing, 1998, 48, 96-129.	4.1	1,235
208	A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs. SIAM Journal of Scientific Computing, 1998, 20, 359-392.	2.8	3,806
209	WebACE., 1998,,.		114
210	Scalable parallel data mining for association rules. , 1997, , .		144
211	Multilevel hypergraph partitioning. , 1997, , .		397
212	Parallel threshold-based ILU factorization. , 1997, , .		31
213	Scalable parallel data mining for association rules. SIGMOD Record, 1997, 26, 277-288.	1.2	28
214	Highly scalable parallel algorithms for sparse matrix factorization. IEEE Transactions on Parallel and Distributed Systems, 1997, 8, 502-520.	5.6	136
215	Repartitioning of adaptive meshes: Experiments with multilevel diffusion. Lecture Notes in Computer Science, 1997, , 945-949.	1.3	2
216	Multilevel Diffusion Schemes for Repartitioning of Adaptive Meshes. Journal of Parallel and Distributed Computing, 1997, 47, 109-124.	4.1	131

#	Article	IF	CITATIONS
217	Parallel multilevel k-way partitioning scheme for irregular graphs. , 1996, , .		199
218	Analysis of multilevel graph partitioning. , 1995, , .		160
219	Protein Structure Prediction using String Kernels. , 0, , 145-168.		4