
James Imre Nagy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8499203/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the Organization of Connexin36 Expression in Electrically Coupled Cholinergic VOc Neurons (Partition Cells) in the Spinal Cord and Their C-terminal Innervation of Motoneurons. Neuroscience, 2022, 485, 91-115.	1.1	6
2	Could electrical coupling contribute to the formation of cell assemblies?. Reviews in the Neurosciences, 2020, 31, 121-141.	1.4	14
3	ZO-1 associates with α3 integrin and connexin43 in trabecular meshwork and Schlemm's canal cells. International Journal of Physiology, Pathophysiology and Pharmacology, 2020, 12, 1-10.	0.8	4
4	Gap junction connexin43 is a key element in mediating phagocytosis activity in human trabecular meshwork cells. International Journal of Physiology, Pathophysiology and Pharmacology, 2020, 12, 25-31.	0.8	2
5	Connexin36 localization along axon initial segments in the mammalian CNS. International Journal of Physiology, Pathophysiology and Pharmacology, 2020, 12, 153-165.	0.8	3
6	Astrocytes drive cortical vasodilatory signaling by activating endothelial NMDA receptors. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 481-496.	2.4	49
7	On the occurrence and enigmatic functions of mixed (chemical plus electrical) synapses in the mammalian CNS. Neuroscience Letters, 2019, 695, 53-64.	1.0	29
8	E3 ubiquitin ligases <scp>LNX</scp> 1 and <scp>LNX</scp> 2 localize at neuronal gap junctions formed by connexin36 in rodent brain and molecularly interact with connexin36. European Journal of Neuroscience, 2018, 48, 3062-3081.	1.2	17
9	Structural and Intermolecular Associations Between Connexin36 and Protein Components of the Adherens Junction–Neuronal Gap Junction Complex. Neuroscience, 2018, 384, 241-261.	1.1	12
10	Connexin36 Expression in Primary Afferent Neurons in Relation to the Axon Reflex and Modality Coding of Somatic Sensation. Neuroscience, 2018, 383, 216-234.	1.1	7
11	Electrical synapses in mammalian CNS: Past eras, present focus and future directions. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 102-123.	1.4	89
12	Immunofluorescence reveals unusual patterns of labelling for connexin43 localized to calbindinâ€D28Kâ€positive interstitial cells in the pineal gland. European Journal of Neuroscience, 2017, 45, 1553-1569.	1.2	1
13	Connexin36 localization to pinealocytes in the pineal gland of mouse and rat. European Journal of Neuroscience, 2017, 45, 1594-1605.	1.2	2
14	Cx36, Cx43 and Cx45 in mouse and rat cerebellar cortex: speciesâ€specific expression, compensation in Cx36 null mice and coâ€localization in neurons vs. glia. European Journal of Neuroscience, 2017, 46, 1790-1804.	1.2	15
15	FRIL is for the Tenacious: Maintaining Rigor and Reproducibility. Microscopy and Microanalysis, 2017, 23, 1148-1149.	0.2	0
16	Electrical Synapses: New Rules for Assembling an Old Structure Asymmetrically. Current Biology, 2017, 27, R1214-R1216.	1.8	2
17	K _V 1 channels identified in rodent myelinated axons, linked to Cx29 in innermost myelin: support for electrically active myelin in mammalian saltatory conduction. Journal of Neurophysiology, 2016, 115, 1836-1859.	0.9	31
18	Connexin36 expression in major centers of the auditory system in the CNS of mouse and rat: Evidence for neurons forming purely electrical synapses and morphologically mixed synapses. Neuroscience, 2015, 303, 604-629.	1.1	28

#	Article	IF	CITATIONS
19	Elevated auditory brainstem response thresholds in mice with Connexin36 gene ablation. Acta Oto-Laryngologica, 2015, 135, 814-818.	0.3	3
20	Heterotypic gap junctions at glutamatergic mixed synapses are abundant in goldfish brain. Neuroscience, 2015, 285, 166-193.	1.1	16
21	Molecular determinants of magnesium-dependent synaptic plasticity at electrical synapses formed by connexin36. Nature Communications, 2014, 5, 4667.	5.8	45
22	Reâ€evaluation of connexins associated with motoneurons in rodent spinal cord, sexually dimorphic motor nuclei and trigeminal motor nucleus. European Journal of Neuroscience, 2014, 39, 757-770.	1.2	17
23	Connexin36 in gap junctions forming electrical synapses between motoneurons in sexually dimorphic motor nuclei in spinal cord of rat and mouse. European Journal of Neuroscience, 2014, 39, 771-787.	1.2	21
24	Connexin36 identified at morphologically mixed chemical/electrical synapses on trigeminal motoneurons and at primary afferent terminals on spinal cord neurons in adult mouse and rat. Neuroscience, 2014, 263, 159-180.	1.1	35
25	Functional alterations in gut contractility after connexin36 ablation and evidence for gap junctions forming electrical synapses between nitrergic enteric neurons. FEBS Letters, 2014, 588, 1480-1490.	1.3	17
26	Molecular and Functional Asymmetry at a Vertebrate Electrical Synapse. Neuron, 2013, 79, 957-969.	3.8	85
27	Morphologically mixed chemical–electrical synapses formed by primary afferents in rodent vestibular nuclei as revealed by immunofluorescence detection of connexin36 and vesicular glutamate transporter-1. Neuroscience, 2013, 252, 468-488.	1.1	31
28	Grafting of fetal brainstem 5-HT neurons into the sublesional spinal cord of paraplegic rats restores coordinated hindlimb locomotion. Experimental Neurology, 2013, 247, 572-581.	2.0	43
29	Synergy between Electrical Coupling and Membrane Properties Promotes Strong Synchronization of Neurons of the Mesencephalic Trigeminal Nucleus. Journal of Neuroscience, 2012, 32, 4341-4359.	1.7	107
30	Evidence for connexin36 localization at hippocampal mossy fiber terminals suggesting mixed chemical/electrical transmission by granule cells. Brain Research, 2012, 1487, 107-122.	1.1	32
31	Under Construction: Building the Macromolecular Superstructure and Signaling Components of an Electrical Synapse. Journal of Membrane Biology, 2012, 245, 303-317.	1.0	31
32	Connexin Composition in Apposed Gap Junction Hemiplaques Revealed by Matched Double-Replica Freeze-Fracture Replica Immunogold Labeling. Journal of Membrane Biology, 2012, 245, 333-344.	1.0	25
33	The effector and scaffolding proteins AF6 and MUPP1 interact with connexin36 and localize at gap junctions that form electrical synapses in rodent brain. European Journal of Neuroscience, 2012, 35, 166-181.	1.2	39
34	Requirement of neuronal connexin36 in pathways mediating presynaptic inhibition of primary afferents in functionally mature mouse spinal cord. Journal of Physiology, 2012, 590, 3821-3839.	1.3	37
35	Transgenic mice expressing the human growth hormone gene provide a model system to study human growth hormone synthesis and secretion in non-tumor-derived pituitary cells: Differential effects of dexamethasone and thyroid hormone. Molecular and Cellular Endocrinology, 2011, 345, 48-57.	1.6	26
36	Connexin26 expression in brain parenchymal cells demonstrated by targeted connexin ablation in transgenic mice. European Journal of Neuroscience, 2011, 34, 263-271.	1.2	40

#	Article	IF	CITATIONS
37	Ablation of connexin30 in transgenic mice alters expression patterns of connexin26 and connexin32 in glial cells and leptomeninges. European Journal of Neuroscience, 2011, 34, 1783-1793.	1.2	32
38	Impaired hypothalamic Fto expression in response to fasting and glucose in obese mice. Nutrition and Diabetes, 2011, 1, e19-e19.	1.5	39
39	Direct association of connexin36 with zonula occludens-2 and zonula occludens-3. Neurochemistry International, 2009, 54, 393-402.	1.9	37
40	Ablation of Cx47 in transgenic mice leads to the loss of MUPP1, ZONAB and multiple connexins at oligodendrocyte–astrocyte gap junctions. European Journal of Neuroscience, 2008, 28, 1503-1517.	1.2	53
41	Mouse Hyal3 encodes a 45- to 56-kDa glycoprotein whose overexpression increases hyaluronidase 1 activity in cultured cells. Glycobiology, 2008, 18, 280-289.	1.3	49
42	Connexin45-Containing Neuronal Gap Junctions in Rodent Retina Also Contain Connexin36 in Both Apposing Hemiplaques, Forming Bihomotypic Gap Junctions, with Scaffolding Contributed by Zonula Occludens-1. Journal of Neuroscience, 2008, 28, 9769-9789.	1.7	117
43	Interaction between connexin35 and zonula occludens-1 and its potential role in the regulation of electrical synapses. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12545-12550.	3.3	64
44	Characterization of Connexin31.1-deficient mice reveals impaired placental development. Developmental Biology, 2007, 312, 258-271.	0.9	43
45	Identification of connexin36 in gap junctions between neurons in rodent locus coeruleus. Neuroscience, 2007, 147, 938-956.	1.1	77
46	Spatial relationships of connexin36, connexin57 and zonula occludens-1 in the outer plexiform layer of mouse retina. Neuroscience, 2007, 148, 473-488.	1.1	32
47	Connexin36 vs. connexin32, "miniature―neuronal gap junctions, and limited electrotonic coupling in rodent suprachiasmatic nucleus. Neuroscience, 2007, 149, 350-371.	1.1	75
48	Characterization of connexin30.3-deficient mice suggests a possible role of connexin30.3 in olfaction. European Journal of Cell Biology, 2007, 86, 683-700.	1.6	25
49	Association of connexin36 and zonula occludens-1 with zonula occludens-2 and the transcription factor zonula occludens-1-associated nucleic acid-binding protein at neuronal gap junctions in rodent retina. Neuroscience, 2006, 140, 433-451.	1.1	43
50	Abundance and ultrastructural diversity of neuronal gap junctions in the OFF and ON sublaminae of the inner plexiform layer of rat and mouse retina. Neuroscience, 2006, 142, 1093-1117.	1.1	83
51	Interaction of Zonula Occludens-1 (ZO-1) with α-Actinin-4: Application of Functional Proteomics for Identification of PDZ Domain-Associated Proteins. Journal of Proteome Research, 2006, 5, 2123-2134.	1.8	47
52	Expression of zonula occludens-1 (ZO-1) and the transcription factor ZO-1-associated nucleic acid-binding protein (ZONAB)-MsY3 in glial cells and colocalization at oligodendrocyte and astrocyte gap junctions in mouse brain. European Journal of Neuroscience, 2005, 22, 404-418.	1.2	94
53	Decreased expression of DMPK: correlation with CTG repeat expansion and fibre type composition in myotonic dystrophy type 1. Neurological Sciences, 2005, 26, 235-242.	0.9	20
54	Ultrastructural localization of connexins (Cx36, Cx43, Cx45), glutamate receptors and aquaporin-4 in rodent olfactory mucosa, olfactory nerve and olfactory bulb. Journal of Neurocytology, 2005, 34, 307-341.	1.6	92

#	Article	IF	CITATIONS
55	Connexin-47 and connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt-Lanterman incisures: Implications for ionic homeostasis and potassium siphoning. Neuroscience, 2005, 136, 65-86.	1.1	154
56	Neuronal connexin36 association with zonula occludens-1 protein (ZO-1) in mouse brain and interaction with the first PDZ domain of ZO-1. European Journal of Neuroscience, 2004, 19, 2132-2146.	1.2	131
57	High-resolution proteomic mapping in the vertebrate central nervous system: Close proximity of connexin35 to NMDA glutamate receptor clusters and co-localization of connexin36 with immunoreactivity for zonula occludens protein-1 (ZO-1). Journal of Neurocytology, 2004, 33, 131-151.	1.6	63
58	Device for the Reversed-Phase Separation and On-Target Deposition of Peptides Incorporating a Hydrophobic Sample Barrier for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Analytical Chemistry, 2004, 76, 1189-1196.	3.2	21
59	Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Research Reviews, 2004, 47, 191-215.	9.1	339
60	Dynamics of electrical transmission at club endings on the Mauthner cells. Brain Research Reviews, 2004, 47, 227-244.	9.1	104
61	Connexin47, connexin29 and connexin32 co-expression in oligodendrocytes and cx47 association with zonula occludens-1 (zo-1) in mouse brain. Neuroscience, 2004, 126, 611-630.	1.1	115
62	Connexin29 and connexin32 at oligodendrocyte and astrocyte gap junctions and in myelin of the mouse central nervous system. Journal of Comparative Neurology, 2003, 464, 356-370.	0.9	88
63	Zebrafish Cx35: Cloning and characterization of a gap junction gene highly expressed in the retina. Journal of Neuroscience Research, 2003, 73, 753-764.	1.3	14
64	Coupling of astrocyte connexins Cx26, Cx30, Cx43 to oligodendrocyte Cx29, Cx32, Cx47: Implications from normal and connexin32 knockout mice. Glia, 2003, 44, 205-218.	2.5	180
65	Distribution and expression of A1 adenosine receptors, adenosine deaminase and adenosine deaminase-binding protein (CD26) in goldfish brain. Neurochemistry International, 2003, 42, 455-464.	1.9	19
66	Expression of a splice variant of choline acetyltransferase in magnocellular neurons of the tuberomammillary nucleus of rat. Neuroscience, 2003, 118, 243-251.	1.1	19
67	Short-Range Functional Interaction Between Connexin35 and Neighboring Chemical Synapses. Cell Communication and Adhesion, 2003, 10, 419-423.	1.0	19
68	Astrocyte and Oligodendrocyte Connexins of the Glial Syncytium in Relation to Astrocyte Anatomical Domains and Spatial Buffering. Cell Communication and Adhesion, 2003, 10, 401-406.	1.0	48
69	Connexin35 Mediates Electrical Transmission at Mixed Synapses on Mauthner Cells. Journal of Neuroscience, 2003, 23, 7489-7503.	1.7	98
70	Astrocyte and oligodendrocyte connexins of the glial syncytium in relation to astrocyte anatomical domains and spatial buffering. Cell Communication and Adhesion, 2003, 10, 401-6.	1.0	25
71	Connexin29 expression, immunocytochemistry and freeze-fracture replica immunogold labelling (FRIL) in sciatic nerve. European Journal of Neuroscience, 2002, 16, 795-806.	1.2	64
72	Sequence, protein expression and extracellular-regulated kinase association of the hyaladherin RHAMM (receptor for hyaluronan mediated motility) in PC12 cells. Neuroscience Letters, 2001, 306, 49-52.	1.0	13

#	Article	IF	CITATIONS
73	Cell-Specific Expression of Connexins and Evidence of Restricted Gap Junctional Coupling between Glial Cells and between Neurons. Journal of Neuroscience, 2001, 21, 1983-2000.	1.7	379
74	Identification of Cells Expressing Cx43, Cx30, Cx26, Cx32 and Cx36 in Gap Junctions of Rat Brain and Spinal Cord. Cell Communication and Adhesion, 2001, 8, 315-320.	1.0	185
75	Subcellular distribution, calmodulin interaction, and mitochondrial association of the hyaluronan-binding protein RHAMM in rat brain. Journal of Neuroscience Research, 2001, 65, 6-16.	1.3	37
76	Identification of sequence, protein isoforms, and distribution of the hyaluronan-binding protein RHAMM in adult and developing rat brain. Journal of Comparative Neurology, 2001, 439, 315-330.	0.9	49
77	Connexin26 in adult rodent central nervous system: Demonstration at astrocytic gap junctions and colocalization with connexin30 and connexin43. Journal of Comparative Neurology, 2001, 441, 302-323.	0.9	201
78	Enrichment of neuronal and glial connexins in the postsynaptic density subcellular fraction of rat brain. Brain Research, 2001, 898, 1-8.	1.1	13
79	Connexin43 phosphorylation state and intercellular communication in cultured astrocytes following hypoxia and protein phosphatase inhibition. European Journal of Neuroscience, 2000, 12, 2644-2650.	1.2	99
80	A brain slice model for <i>in vitro</i> analyses of astrocytic gap junction and connexin43 regulation: actions of ischemia, glutamate and elevated potassium. European Journal of Neuroscience, 2000, 12, 4567-4572.	1.2	11
81	Association of connexin36 with zonula occludens-1 in HeLa cells, ?TC-3 cells, pancreas, and adrenal gland. Histochemistry and Cell Biology, 2000, 122, 485-498.	0.8	54
82	Gap junctions and connexins in the mammalian central nervous system. Advances in Molecular and Cell Biology, 2000, 30, 323-396.	0.1	18
83	Immunogold evidence that neuronal gap junctions in adult rat brain and spinal cord contain connexin-36 but not connexin-32 or connexin-43. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7573-7578.	3.3	278
84	Activation of fibres in rat sciatic nerve alters phosphorylation state of connexin-43 at astrocytic gap junctions in spinal cord: evidence for junction regulation by neuronal–glial interactions. Neuroscience, 2000, 97, 113-123.	1.1	40
85	Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Research Reviews, 2000, 32, 29-44.	9.1	377
86	A brain slice model for in vitro analyses of astrocytic gap junction and connexin43 regulation: actions of ischemia, glutamate and elevated potassium. European Journal of Neuroscience, 2000, 12, 4567-4572.	1.2	5
87	A brain slice model for in vitro analyses of astrocytic gap junction and connexin43 regulation: actions of ischemia, glutamate and elevated potassium. European Journal of Neuroscience, 2000, 12, 4567-72.	1.2	34
88	Connexin30 in rodent, cat and human brain: selective expression in gray matter astrocytes, co-localization with connexin43 at gap junctions and late developmental appearance. Neuroscience, 1999, 88, 447-468.	1.1	311
89	Immunorecognition, ultrastructure and phosphorylation status of astrocytic gap junctions and connexin43 in rat brain after cerebral focal ischaemia. European Journal of Neuroscience, 1998, 10, 2444-2463.	1.2	99
90	The hyaluronan receptor for RHAMM in noradrenergic fibers contributes to axon growth capacity of locus coeruleus neurons in an intraocular transplant model. Neuroscience, 1998, 86, 241-255.	1.1	30

#	Article	IF	CITATIONS
91	Selective Monoclonal Antibody Recognition and Cellular Localization of an Unphosphorylated Form of Connexin43. Experimental Cell Research, 1997, 236, 127-136.	1.2	104
92	Evidence for the co-localization of another connexin with connexin-43 at astrocytic gap junctions in rat brain. Neuroscience, 1997, 78, 533-548.	1.1	89
93	Impaired brain development and reduced astrocyte response to injury in transgenic mice expressing IGF binding protein-1. Brain Research, 1997, 769, 97-107.	1.1	71
94	Connexin32 in oligodendrocytes and association with myelinated fibers in mouse and rat brain. , 1997, 379, 571-591.		91
95	Adenosine deaminase in rodent median eminence: detection by antibody to the mouse enzyme and co-localization with adenosine deaminase-complexing protein (CD26). Neuroscience, 1996, 73, 459-471.	1.1	16
96	Subcellular localization of ryanodine receptors in rat brain. European Journal of Pharmacology, 1996, 298, 185-189.	1.7	26
97	Connexin-43 in rat spinal cord: localization in astrocytes and identification of heterotypic astro-oligodendrocytic gap junctions. Neuroscience, 1996, 76, 931-945.	1.1	77
98	Elevated connexin43 immunoreactivity at sites of amyloid plaques in alzheimer's disease. Brain Research, 1996, 717, 173-178.	1.1	161
99	Induction of connexin43 and gap junctional communication in PC12 cells overexpressing the carboxy terminal region of amyloid precursor protein. Journal of Neuroscience Research, 1996, 44, 124-132.	1.3	13
100	Increased connexin-43 and gap junctional communication correlate with altered phenotypic characteristics of cells overexpressing the receptor for hyaluronic acid-mediated motility. Cell Growth & Differentiation: the Molecular Biology Journal of the American Association for Cancer Research, 1996, 7, 745-51.	0.8	7
101	Astrocytic gap junction removal, connexin43 redistribution, and epitope masking at excitatory amino acid lesion sites in rat brain. Glia, 1995, 14, 279-294.	2.5	50
102	In situ transblot and immunocytochemical comparisons of astrocytic connexin-43 responses to NMDA and kainic acid in rat brain. Brain Research, 1995, 683, 153-157.	1.1	15
103	Requirement of the hyaluronan receptor RHAMM in neurite extension and motility as demonstrated in primary neurons and neuronal cell lines. Journal of Neuroscience, 1995, 15, 241-252.	1.7	65
104	Propagation of intercellular calcium waves in PC12 cells overexpressing a carboxy-terminal fragment of amyloid precursor protein. Neuroscience Letters, 1995, 199, 21-24.	1.0	15
105	C-terminals on motoneurons: Electron microscope localization of cholinergic markers in adult rats and antibody-induced depletion in neonates. Neuroscience, 1995, 65, 879-891.	1.1	63
106	Utility of intensely fluorescent cyanine dyes (CY3) for assay of gap junctional communication by dye-transfer. Neuroscience Letters, 1995, 184, 71-74.	1.0	16
107	Intracranial transplantation and survival of tuberomammillary histaminergic neurons. Neuroscience, 1995, 64, 61-70.	1.1	11
108	Astrocyte and microglial motility in vitro is functionally dependent on the hyaluronan receptor RHAMM. Glia, 1994, 12, 68-80.	2.5	46

#	Article	IF	CITATIONS
109	Ischemia-induced cellular redistribution of the astrocytic gap junctional protein connexin43 in rat brain. Brain Research, 1994, 652, 311-322.	1.1	94
110	Phosphorylated Forms of Connexin43 Predominate in Rat Brain: Demonstration by Rapid Inactivation of Brain Metabolism. Journal of Neurochemistry, 1994, 62, 2394-2403.	2.1	57
111	Evidence for the cholinergic nature of C-terminals associated with subsurface cisterns in ?-Motoneurons of rat. Synapse, 1993, 15, 17-32.	0.6	82
112	Organization of galanin-like immunoreactive neuronal systems in weakly electric fish (Apteronotus) Tj ETQq0 0 0	rgBT /Ove 1.0	rlock 10 Tf 5 47
113	Differential anatomical and cellular patterns of connexin43 expression during postnatal development of rat brain. Developmental Brain Research, 1992, 66, 165-180.	2.1	77
114	Quantitative immunohistochemical and biochemical correlates of connexin43 localization in rat brain. Glia, 1992, 5, 1-9.	2.5	73
115	Cytochemical relationships and central terminations of a unique population of primary afferent neurons in rat. Brain Research Bulletin, 1991, 26, 825-843.	1.4	10
116	Cytochrome oxidase immunohistochemistry in rat brain and dorsal root ganglia: Visualization of enzyme in neuronal perikarya and in parvalbumin-positive neurons. Neuroscience, 1991, 40, 825-839.	1.1	24
117	Depletion of connexin43-immunoreactivity in astrocytes after kainic acid-induced lesions in rat brain. Neuroscience Letters, 1991, 130, 120-124.	1.0	50
118	Characterization of acute and latent herpes simplex virus infection of dorsal root ganglia in rats. Laboratory Animals, 1991, 25, 97-105.	0.5	7
119	On the organization of astrocytic gap junctions in rat brain as suggested by LM and EM immunohistochemistry of connexin43 expression. Journal of Comparative Neurology, 1990, 302, 853-883.	0.9	211
120	Calcitonin gene-related peptide in primary afferent neurons of rat: Co-existence with fluoride-resistant acid phosphatase and depletion by neonatal capsaicin. Neuroscience, 1990, 36,	1.1	52

120	fluoride-resistant acid phosphatase and depletion by neonatal capsaicin. Neuroscience, 1990, 36, 751-760.	1.1	52
121	Adenosine deaminase and purinergic neuroregulation. Neurochemistry International, 1990, 16, 211-221.	1.9	35
122	Adenosine Deaminase and [3H] Nitrobenzylthioinosine as Markers of Adenosine Metabolism and Transport in Central Purinergic Systems. , 1990, , 225-288.		23
123	LM and EM immunolocalization of the gap junctional protein connexin 43 in rat brain. Brain Research, 1990, 508, 313-319.	1.1	201
124	Epitopes of gap junctional proteins localized to neuronal subsurface cisterns. Brain Research, 1990, 527, 135-139.	1.1	29
125	Ultrastructural immunolocalization of adenosine deaminase in histaminergic neurons of the tuberomammillary nucleus of rat. Brain Research, 1990, 527, 335-341.	1.1	10

Adenosine Deaminase and Adenosine Transport Systems in the CNS. , 1990, , 20-25.

#	Article	IF	CITATIONS
127	Quantitative histochemical analysis of cytochrome oxidase in rat dorsal root ganglia and its co-localization with carbonic anhydrase. Neuroscience, 1989, 33, 351-362.	1.1	27
128	Analysis of parvalbumin and calbindin D28k-immunoreactive neurons in dorsal root ganglia of rat in relation to their cytochrome oxidase and carbonic anhydrase content. Neuroscience, 1989, 33, 363-371.	1.1	85
129	Parvalbumin- and calbindin D28k-immunoreactive neurons in the superficial layers of the spinal cord dorsal horn of rat. Brain Research Bulletin, 1989, 23, 493-508.	1.4	60
130	Adenosine deaminase-â€~like' immunoreactivity in cerebellar Purkinje cells of rat. Brain Research, 1988, 457, 21-28.	1.1	10
131	Autotomy in rats after peripheral nerve section: Lack of effect of topical nerve or neonatal capsaicin treatment. Pain, 1986, 24, 75-86.	2.0	15
132	Anatomical and cytochemical relationships of adenosine deaminase-containing primary afferent neurons in the rat. Neuroscience, 1985, 15, 799-813.	1.1	73
133	Immunohistochemical localization of adenosine deaminase in primary afferent neurons of the rat. Neuroscience Letters, 1984, 48, 133-138.	1.0	30
134	Ontogenesis of adenosine receptors in the central nervous system of the rat. Developmental Brain Research, 1984, 13, 97-104.	2.1	64
135	The nature of the substance P-containing nerve fibres in taste papillae of the rat tongue. Neuroscience, 1982, 7, 3137-3151.	1.1	126
136	Fluoride-resistant acid phosphatase-containing neurones in dorsal root ganglia are separate from those containing substance P or somatostatin. Neuroscience, 1982, 7, 89-97.	1.1	239
137	Cholecystokinin in the rat spinal cord: distribution and lack of effect of neonatal capsaicin treatment and rhizotomy. Brain Research, 1982, 238, 494-498.	1.1	67
138	The origin of substance P in the rat submandibular gland and its major duct. Brain Research, 1982, 252, 327-333.	1.1	54
139	Capsaicin: A Chemical Probe for Sensory Neuron Mechanisms. , 1982, , 185-235.		78
140	A re-evaluation of the neurochemical and antinociceptive effects of intrathecal capsaicin in the rat. Brain Research, 1981, 211, 497-502.	1.1	79
141	Biochemical and anatomical observations on the degeneration of peptide-containing primary afferent neurons after neonatal capsaicin. Neuroscience, 1981, 6, 1923-1934.	1.1	359
142	A striatal source of glutamic acid decarbocylase activity in the substantia nigra. Brain Research, 1980, 187, 237-242.	1.1	32
143	Neurotransmitters contained in the efferents of the striatum. Brain Research, 1980, 194, 391-402.	1.1	116
144	The nucleus basalis magnocellularis: The origin of a cholinergic projection to the neocortex of the rat. Neuroscience, 1980, 5, 1161-1174.	1.1	603

#	Article	IF	CITATIONS
145	Localization of dopamine receptors in rat brain. Brain Research, 1979, 169, 209-214.	1.1	51
146	Increased striatal glutamate decarboxylase after lesions of the nigrostriatal pathway. Brain Research, 1978, 143, 168-173.	1.1	71