Zhenchun Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8498509/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Periodic charging planning for a mobile WCE in wireless rechargeable sensor networks based on hybrid PSO and GA algorithm. Applied Soft Computing Journal, 2019, 75, 388-403.	7.2	77
2	A Q-learning algorithm for task scheduling based on improved SVM in wireless sensor networks. Computer Networks, 2019, 161, 138-149.	5.1	29
3	A task scheduling algorithm based on Q-learning and shared value function for WSNs. Computer Networks, 2017, 126, 141-149.	5.1	28
4	A Periodic Multinode Charging and Data Collection Scheme With Optimal Traveling Path in WRSNs. IEEE Systems Journal, 2020, 14, 3518-3529.	4.6	27
5	Spectral Efficiency Optimization and Interference Management for Multi-Hop D2D Communications in VANETs. IEEE Transactions on Vehicular Technology, 2020, 69, 6422-6436.	6.3	23
6	K-CHRA: A Clustering Hierarchical Routing Algorithm for Wireless Rechargeable Sensor Networks. IEEE Access, 2019, 7, 81859-81874.	4.2	20
7	The path planning scheme for joint charging and data collection in WRSNs: A multi-objective optimization method. Journal of Network and Computer Applications, 2020, 156, 102565.	9.1	19
8	Multi-Node Charging Planning Algorithm With an Energy-Limited WCE in WRSNs. IEEE Access, 2019, 7, 47154-47170.	4.2	16
9	A Wireless Sensor Network Recharging Strategy by Balancing Lifespan of Sensor Nodes. , 2017, , .		15
10	Optimal Base Station Placement for Wireless Sensor Networks with Successive Interference Cancellation. Sensors, 2015, 15, 1676-1690.	3.8	14
11	Multi-MC Charging Schedule Algorithm With Time Windows in Wireless Rechargeable Sensor Networks. IEEE Access, 2019, 7, 156217-156227.	4.2	14
12	Cost Minimization Algorithms for Data Center Management. IEEE Transactions on Parallel and Distributed Systems, 2017, 28, 60-71.	5.6	13
13	Throughput Maximization of Offloading Tasks in Multi-Access Edge Computing Networks for High-Speed Railways. IEEE Transactions on Vehicular Technology, 2021, 70, 9525-9539.	6.3	13
14	An efficient interference management framework for multi-hop wireless networks. , 2013, , .		8
15	A Multi-objective Algorithm for Joint Energy Replenishment and Data Collection in Wireless Rechargeable Sensor Networks. Lecture Notes in Computer Science, 2018, , 497-508.	1.3	7
16	Power control algorithm based on non-cooperative game theory in successive interference cancellation. Wireless Networks, 2019, 25, 3297-3305.	3.0	6
17	A Novel On-Demand Charging Strategy Based on Swarm Reinforcement Learning in WRSNs. IEEE Access, 2020, 8, 84258-84271.	4.2	6
18	MPTâ€embedding: An unsupervised representation learning of code for software defect prediction. Journal of Software: Evolution and Process, 2021, 33, e2330.	1.6	6

ZHENCHUN WEI

#	Article	IF	CITATIONS
19	A Reliable Transport Protocol with Prediction Mechanism for Urgent Information in Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 2013, 9, 282340.	2.2	5
20	A Multi-Grouped LS-SVM Method for Short-Term Urban Traffic Flow Prediction. , 2019, , .		4
21	Research of Component-Based Hybrid Design Pattern for Real-Time Microkernel. , 2006, , .		3
22	Energy-saving Strategy for Edge Computing by Collaborative Processing Tasks on Base Stations. , 2020, , .		2
23	An Approach of Industrial Ethernet Network System Design with Hybrid Niche Genetic Algorithm. , 2006, , .		1
24	Researches on the dynamic data routing and recharging schemes for rechargeable wireless sensor networks deployed in 3-dimensional spaces. Wireless Networks, 2017, 23, 1035-1044.	3.0	1
25	The mine locomotive wireless network strategy based on successive interference cancellation with dynamic power control. International Journal of Distributed Sensor Networks, 2017, 13, 155014771771113.	2.2	1
26	An Adaptive Multi-Channel Cooperative Data Transmission Scheduling in VANETs. Sensors, 2020, 20, 5612.	3.8	1
27	The Charging Path Optimization Algorithm with the Moving Velocity Control of Wireless Charing Equipment in WRSNs. , 2021, , .		1
28	An optimal wireless transmission strategy based on coherent beamforming and successive interference cancellation. Wireless Networks, 0, , 1.	3.0	1
29	Hierarchical Modeling and Control of Discrete Event Control Systems based on Rule Description Method. , 2006, , .		Ο
30	Data Synchronization Infrastructure with Middleware. , 2007, , .		0
31	Multi-objective Optimization in Partner Selection. , 2007, , .		Ο
32	Modeling and Analyzing for Automotive Nets System Based on OOPN. , 2011, , .		0
33	Modeling and verification of running process control for underground mine locomotive. Computers and Electrical Engineering, 2020, 87, 106790.	4.8	0
34	An Optimal Wireless Transmission Strategy based on Coherent Beamforming and Successive Interference Cancellation for Edge Computing. , 2020, , .		0