Haojie Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8498505/publications.pdf

Version: 2024-02-01

HAOUE HUANC

#	Article	IF	CITATIONS
1	GLI3 Is Stabilized by SPOP Mutations and Promotes Castration Resistance via Functional Cooperation with Androgen Receptor in Prostate Cancer. Molecular Cancer Research, 2022, 20, 62-76.	3.4	14
2	3-Aminophthalic acid, a new cereblon ligand for targeted protein degradation by O'PROTAC. Chemical Communications, 2022, 58, 2383-2386.	4.1	13
3	Estrogen receptor beta repurposes EZH2 to suppress oncogenic NFκB/p65 signaling in triple negative breast cancer. Npj Breast Cancer, 2022, 8, 20.	5.2	9
4	Targeting signaling pathways in prostate cancer: mechanisms and clinical trials. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	40
5	Re-Evaluate Fusion Genes in Prostate Cancer. Cancer Informatics, 2021, 20, 117693512110275.	1.9	5
6	Integrated Molecular Characterization of Fumarate Hydratase–deficient Renal Cell Carcinoma. Clinical Cancer Research, 2021, 27, 1734-1743.	7.0	54
7	ZMYND8 preferentially binds phosphorylated EZH2 to promote a PRC2-dependent to -independent function switch in hypoxia-inducible factor–activated cancer. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
8	An acetyl-histone vulnerability in PI3K/AKT inhibition-resistant cancers is targetable by both BET and HDAC inhibitors. Cell Reports, 2021, 34, 108744.	6.4	17
9	A noncanonical AR addiction drives enzalutamide resistance in prostate cancer. Nature Communications, 2021, 12, 1521.	12.8	43
10	Mutated SPOP E3 Ligase Promotes 17βHSD4 Protein Degradation to Drive Androgenesis and Prostate Cancer Progression. Cancer Research, 2021, 81, 3593-3606.	0.9	18
11	MAP3K7-IKK Inflammatory Signaling Modulates AR Protein Degradation and Prostate Cancer Progression. Cancer Research, 2021, 81, 4471-4484.	0.9	5
12	ATM-phosphorylated SPOP contributes to 53BP1 exclusion from chromatin during DNA replication. Science Advances, 2021, 7, .	10.3	22
13	CBP/p300: Critical Co-Activators for Nuclear Steroid Hormone Receptors and Emerging Therapeutic Targets in Prostate and Breast Cancers. Cancers, 2021, 13, 2872.	3.7	45
14	FOXA1 overexpression suppresses interferon signaling and immune response in cancer. Journal of Clinical Investigation, 2021, 131, .	8.2	48
15	Destruction of DNAâ€Binding Proteins by Programmable Oligonucleotide PROTAC (O'PROTAC): Effective Targeting of LEF1 and ERG. Advanced Science, 2021, 8, e2102555.	11.2	56
16	SPOP mutation induces DNA methylation via stabilizing GLP/G9a. Nature Communications, 2021, 12, 5716.	12.8	19
17	An androgen receptor switch underlies lineage infidelity in treatment-resistant prostate cancer. Nature Cell Biology, 2021, 23, 1023-1034.	10.3	72
18	Protocol to apply spike-in ChIP-seq to capture massive histone acetylation in human cells. STAR Protocols, 2021, 2, 100681.	1.2	10

#	Article	IF	CITATIONS
19	Integrated exome and RNA sequencing of TFE3-translocation renal cell carcinoma. Nature Communications, 2021, 12, 5262.	12.8	40
20	SPOP mutation induces replication over-firing by impairing Geminin ubiquitination and triggers replication catastrophe upon ATR inhibition. Nature Communications, 2021, 12, 5779.	12.8	14
21	HDAC5 Loss Impairs RB Repression of Pro-Oncogenic Genes and Confers CDK4/6 Inhibitor Resistance in Cancer. Cancer Research, 2021, 81, 1486-1499.	0.9	34
22	Posttranslational regulation of androgen dependent and independent androgen receptor activities in prostate cancer. Asian Journal of Urology, 2020, 7, 203-218.	1.2	33
23	Fructose-1,6-bisphosphatase loss modulates STAT3-dependent expression of PD-L1 and cancer immunity. Theranostics, 2020, 10, 1033-1045.	10.0	27
24	DNA Damage Promotes TMPRSS2-ERG Oncoprotein Destruction and Prostate Cancer Suppression via Signaling Converged by GSK312 and WEE1. Molecular Cell, 2020, 79, 1008-1023.e4.	9.7	32
25	Microenvironment-Mediated Resistance to Anti-Androgen Therapy. Cancer Cell, 2020, 38, 155-157.	16.8	9
26	Aberrant activation of super enhancer and choline metabolism drive antiandrogen therapy resistance in prostate cancer. Oncogene, 2020, 39, 6556-6571.	5.9	29
27	Androgen receptor: Functional roles and facets of regulation in urology. Asian Journal of Urology, 2020, 7, 189-190.	1.2	1
28	Overcoming EZH2 Inhibitor Resistance by Taxane in PTEN-Mutated Cancer. Theranostics, 2019, 9, 5020-5034.	10.0	18
29	RUNX2 overexpression and PTEN haploinsufficiency cooperate to promote CXCR7 expression and cellular trafficking, AKT hyperactivation and prostate tumorigenesis. Theranostics, 2019, 9, 3459-3475.	10.0	22
30	The novel BETâ€CBP/p300 dual inhibitor NEO2734 is active in SPOP mutant and wildâ€ŧype prostate cancer. EMBO Molecular Medicine, 2019, 11, e10659.	6.9	56
31	Protein lysine 43 methylation by EZH1 promotes AML1-ETO transcriptional repression in leukemia. Nature Communications, 2019, 10, 5051.	12.8	17
32	<scp>EZH</scp> 2 cooperates with gainâ€ofâ€function p53 mutants to promote cancer growth and metastasis. EMBO Journal, 2019, 38, .	7.8	55
33	Prostate Cancer-associated SPOP mutations enhance cancer cell survival and docetaxel resistance by upregulating Caprin1-dependent stress granule assembly. Molecular Cancer, 2019, 18, 170.	19.2	79
34	Phosphorylated RB Promotes Cancer Immunity by Inhibiting NF-κB Activation and PD-L1 Expression. Molecular Cell, 2019, 73, 22-35.e6.	9.7	174
35	Interplay Among PI3K/AKT, PTEN/FOXO and AR Signaling in Prostate Cancer. Advances in Experimental Medicine and Biology, 2019, 1210, 319-331.	1.6	54
36	Activity of NEO2734, a novel dual inhibitor of both BET and CBP-P300, in SPOP-mutated prostate cancer Journal of Clinical Oncology, 2019, 37, 62-62.	1.6	4

#	Article	IF	CITATIONS
37	Lineage plasticity-mediated therapy resistance in prostate cancer. Asian Journal of Andrology, 2019, 21, 241.	1.6	15
38	Prevalent Homozygous Deletions of Type I Interferon and Defensin Genes in Human Cancers Associate with Immunotherapy Resistance. Clinical Cancer Research, 2018, 24, 3299-3308.	7.0	37
39	Androgen receptor splice variants bind to constitutively open chromatin and promote abiraterone-resistant growth of prostate cancer. Nucleic Acids Research, 2018, 46, 1895-1911.	14.5	79
40	Dual inhibition of <scp>AKT</scp> â€m <scp>TOR</scp> and <scp>AR</scp> signaling by targeting <scp>HDAC</scp> 3 in <i> <scp>PTEN</scp> </i> â€or <i> <scp>SPOP</scp> </i> â€mutated prostate cancer. EMBO Molecular Medicine, 2018, 10, .	6.9	39
41	Whole-genome and Transcriptome Sequencing of Prostate Cancer Identify New Genetic Alterations Driving Disease Progression. European Urology, 2018, 73, 322-339.	1.9	130
42	PTEN Loss Promotes Intratumoral Androgen Synthesis and Tumor Microenvironment Remodeling via Aberrant Activation of RUNX2 in Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2018, 24, 834-846.	7.0	48
43	Cyclophilin J limits inflammation through the blockage of ubiquitin chain sensing. Nature Communications, 2018, 9, 4381.	12.8	10
44	<i>TMPRSS2-ERG</i> Controls Luminal Epithelial Lineage and Antiandrogen Sensitivity in <i>PTEN</i> and <i>TP53</i> -Mutated Prostate Cancer. Clinical Cancer Research, 2018, 24, 4551-4565.	7.0	51
45	DUB3 Promotes BET Inhibitor Resistance and Cancer Progression by Deubiquitinating BRD4. Molecular Cell, 2018, 71, 592-605.e4.	9.7	114
46	Enhancer of zeste-homolog 2 (EZH2) expression and clinical outcomes in metastatic castrate resistant prostate cancer (mCRPC) Journal of Clinical Oncology, 2018, 36, 350-350.	1.6	0
47	<scp>AKT</scp> â€phosphorylated <scp>FOXO</scp> 1 suppresses <scp>ERK</scp> activation and chemoresistance by disrupting <scp>IQGAP</scp> 1â€ <scp>MAPK</scp> interaction. EMBO Journal, 2017, 36, 995-1010.	7.8	101
48	Inhibiting histone deacetylases suppresses glucose metabolism and hepatocellular carcinoma growth by restoring FBP1 expression. Scientific Reports, 2017, 7, 43864.	3.3	72
49	Androgen Receptor Variant AR-V9 Is Coexpressed with AR-V7 in Prostate Cancer Metastases and Predicts Abiraterone Resistance. Clinical Cancer Research, 2017, 23, 4704-4715.	7.0	117
50	Loss of FOXO1 Cooperates with TMPRSS2–ERG Overexpression to Promote Prostate Tumorigenesis and Cell Invasion. Cancer Research, 2017, 77, 6524-6537.	0.9	51
51	Fructose-1,6-bisphosphatase Inhibits ERK Activation and Bypasses Gemcitabine Resistance in Pancreatic Cancer by Blocking IQGAP1–MAPK Interaction. Cancer Research, 2017, 77, 4328-4341.	0.9	70
52	Intrinsic BET inhibitor resistance in SPOP-mutated prostate cancer is mediated by BET protein stabilization and AKT–mTORC1 activation. Nature Medicine, 2017, 23, 1055-1062.	30.7	225
53	Dysregulation of INF2-mediated mitochondrial fission in SPOP-mutated prostate cancer. PLoS Genetics, 2017, 13, e1006748.	3.5	54
54	CXCL13 is androgen-responsive and involved in androgen induced prostate cancer cell migration and invasion. Oncotarget, 2017, 8, 53244-53261.	1.8	26

#	Article	IF	CITATIONS
55	A novel highly potent trivalent TGF-β receptor trap inhibits early-stage tumorigenesis and tumor cell invasion in murine Pten-deficient prostate glands. Oncotarget, 2016, 7, 86087-86102.	1.8	32
56	PMEPA1 guards against TGF-β-mediated prostate cancer bone metastasis. Asian Journal of Urology, 2016, 3, 1-3.	1.2	1
57	RNF12 promotes p53-dependent cell growth suppression and apoptosis by targeting MDM2 for destruction. Cancer Letters, 2016, 375, 133-141.	7.2	16
58	Isorhapontigenin (ISO) Inhibits Invasive Bladder Cancer Formation <i>In Vivo</i> and Human Bladder Cancer Invasion <i>In Vitro</i> by Targeting STAT1/FOXO1 Axis. Cancer Prevention Research, 2016, 9, 567-580.	1.5	58
59	Zinc finger protein 191 inhibits hepatocellular carcinoma metastasis through discs large 1â€mediated yesâ€associated protein inactivation. Hepatology, 2016, 64, 1148-1162.	7.3	24
60	A genome-scale CRISPR-Cas9 screening method for protein stability reveals novel regulators of Cdc25A. Cell Discovery, 2016, 2, 16014.	6.7	25
61	KCTD12 Regulates Colorectal Cancer Cell Stemness through the ERK Pathway. Scientific Reports, 2016, 6, 20460.	3.3	34
62	Activation of P-TEFb by Androgen Receptor-Regulated Enhancer RNAs in Castration-Resistant Prostate Cancer. Cell Reports, 2016, 15, 599-610.	6.4	101
63	Measure transcript integrity using RNA-seq data. BMC Bioinformatics, 2016, 17, 58.	2.6	187
64	Detecting the H3F3A mutant allele found in high-grade pediatric glioma by real-time PCR. Journal of Neuro-Oncology, 2016, 126, 27-36.	2.9	10
65	Inhibition of EZH2 by chemo- and radiotherapy agents and small molecule inhibitors induces cell death in castration-resistant prostate cancer. Oncotarget, 2016, 7, 3440-3452.	1.8	45
66	P300 acetyltransferase regulates fatty acid synthase expression, lipid metabolism and prostate cancer growth. Oncotarget, 2016, 7, 15135-15149.	1.8	45
67	BET bromodomain-mediated interaction between ERG and BRD4 promotes prostate cancer cell invasion. Oncotarget, 2016, 7, 38319-38332.	1.8	43
68	Alterations of androgen receptor-regulated enhancer RNAs (eRNAs) contribute to enzalutamide resistance in castration-resistant prostate cancer. Oncotarget, 2016, 7, 38551-38565.	1.8	36
69	Fat lure: adipocytes attract cancer cells out of the prostate. Translational Cancer Research, 2016, 5, S123-S125.	1.0	3
70	Epidaurus: aggregation and integration analysis of prostate cancer epigenome. Nucleic Acids Research, 2015, 43, e7-e7.	14.5	10
71	The Cistrome and Gene Signature of Androgen Receptor Splice Variants in Castration Resistant Prostate Cancer Cells. Journal of Urology, 2015, 193, 690-698.	0.4	57
72	Truncated ERG Oncoproteins from TMPRSS2-ERG Fusions Are Resistant to SPOP-Mediated Proteasome Degradation. Molecular Cell, 2015, 59, 904-916.	9.7	129

#	Article	IF	CITATIONS
73	LncRNA <i>MALAT1</i> enhances oncogenic activities of EZH2 in castration-resistant prostate cancer. Oncotarget, 2015, 6, 41045-41055.	1.8	154
74	ASPP1/2-PP1 complexes are required for chromosome segregation and kinetochore-microtubule attachments. Oncotarget, 2015, 6, 41550-41565.	1.8	14
75	MACE: model based analysis of ChIP-exo. Nucleic Acids Research, 2014, 42, e156-e156.	14.5	84
76	p300 Acetyltransferase Regulates Androgen Receptor Degradation and PTEN-Deficient Prostate Tumorigenesis. Cancer Research, 2014, 74, 1870-1880.	0.9	80
77	Hexokinase 2-Mediated Warburg Effect Is Required for PTEN- and p53-Deficiency-Driven Prostate Cancer Growth. Cell Reports, 2014, 8, 1461-1474.	6.4	233
78	CBP Loss Cooperates with PTEN Haploinsufficiency to Drive Prostate Cancer: Implications for Epigenetic Therapy. Cancer Research, 2014, 74, 2050-2061.	0.9	39
79	Destruction of Full-Length Androgen Receptor by Wild-Type SPOP, but Not Prostate-Cancer-Associated Mutants. Cell Reports, 2014, 6, 657-669.	6.4	217
80	Modulation of Androgen Receptor by FOXA1 and FOXO1 Factors in Prostate Cancer. International Journal of Biological Sciences, 2014, 10, 614-619.	6.4	58
81	BRCA1 is a negative modulator of the PRC2 complex. EMBO Journal, 2013, 32, 1584-1597.	7.8	104
82	Scaffold attachment factor B1: an intrinsic inhibitor of androgen receptor downregulated in prostate cancer. Asian Journal of Andrology, 2013, 15, 703-704.	1.6	1
83	Regulation of FOXO protein stability via ubiquitination and proteasome degradation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1961-1964.	4.1	180
84	FOXO1 Inhibits Runx2 Transcriptional Activity and Prostate Cancer Cell Migration and Invasion. Cancer Research, 2011, 71, 3257-3267.	0.9	135
85	Phosphorylation of EZH2 by CDK1 and CDK2. Cell Cycle, 2011, 10, 579-583.	2.6	47
86	Cyclin-dependent kinases regulate epigenetic gene silencing through phosphorylation of EZH2. Nature Cell Biology, 2010, 12, 1108-1114.	10.3	230
87	Reduced Tumor Necrosis Factor Receptor–Associated Death Domain Expression Is Associated with Prostate Cancer Progression. Cancer Research, 2009, 69, 9448-9456.	0.9	25
88	Inhibition of the Androgen Receptor as a Novel Mechanism of Taxol Chemotherapy in Prostate Cancer. Cancer Research, 2009, 69, 8386-8394.	0.9	179
89	A Transcription-Independent Function of FOXO1 in Inhibition of Androgen-Independent Activation of the Androgen Receptor in Prostate Cancer Cells. Cancer Research, 2008, 68, 10290-10299.	0.9	62
90	Dynamic FoxO transcription factors. Journal of Cell Science, 2007, 120, 2479-2487.	2.0	991

#	Article	IF	CITATIONS
91	CDK2 and FOXO1: A Fork in the Road for Cell Fate Decisions. Cell Cycle, 2007, 6, 902-906.	2.6	25
92	CDK2-Dependent Phosphorylation of FOXO1 as an Apoptotic Response to DNA Damage. Science, 2006, 314, 294-297.	12.6	300
93	FOXO factors: a matter of life and death. Future Oncology, 2006, 2, 83-89.	2.4	89
94	Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1649-1654.	7.1	470
95	Androgens Negatively Regulate Forkhead Transcription Factor FKHR (FOXO1) through a Proteolytic Mechanism in Prostate Cancer Cells. Journal of Biological Chemistry, 2004, 279, 13866-13877.	3.4	61
96	Androgens repress Bcl-2 expression via activation of the retinoblastoma (RB) protein in prostate cancer cells. Oncogene, 2004, 23, 2161-2176.	5.9	47
97	The Role of the Androgen Receptor in Prostate Cancer. Critical Reviews in Eukaryotic Gene Expression, 2002, 12, 193-208.	0.9	72
98	PTEN Induces Chemosensitivity in PTEN-mutated Prostate Cancer Cells by Suppression of Bcl-2 Expression. Journal of Biological Chemistry, 2001, 276, 38830-38836.	3.4	159