
Daniel A Hickman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8498477/publications.pdf Version: 2024-02-01

DANIEL & HICKMAN

#	Article	IF	CITATIONS
1	Production of Syngas by Direct Catalytic Oxidation of Methane. Science, 1993, 259, 343-346.	12.6	887
2	Synthesis gas formation by direct oxidation of methane over Pt monoliths*1. Journal of Catalysis, 1992, 138, 267-282.	6.2	508
3	Steps in CH4 oxidation on Pt and Rh surfaces: High-temperature reactor simulations. AICHE Journal, 1993, 39, 1164-1177.	3.6	319
4	Synthesis gas formation by direct oxidation of methane over Rh monoliths. Catalysis Letters, 1993, 17, 223-237.	2.6	291
5	Kinetics and Mechanism of Ethanol Dehydration on γ-Al ₂ O ₃ : The Critical Role of Dimer Inhibition. ACS Catalysis, 2013, 3, 798-807.	11.2	162
6	The role of boundary layer mass transfer in partial oxidation selectivity. Journal of Catalysis, 1992, 136, 300-308.	6.2	62
7	Fundamental principles of laboratory fixed bed reactor design. Current Opinion in Chemical Engineering, 2016, 13, 1-9.	7.8	41
8	Alternative catalyst supports for hydrogen cyanide synthesis and ammonia oxidation. Industrial & Engineering Chemistry Research, 1993, 32, 809-817.	3.7	30
9	Successful Scale-up of an Industrial Trickle Bed Hydrogenation Using Laboratory Reactor Data. Industrial & Engineering Chemistry Research, 2013, 52, 15287-15292.	3.7	23
10	A comparison of a batch recycle reactor and an integral reactor with fines for scale-up of an industrial trickle bed reactor from laboratory data. Chemical Engineering Science, 2004, 59, 5425-5430.	3.8	21
11	Modeling catalytic gauze reactors: ammonia oxidation. Industrial & Engineering Chemistry Research, 1991, 30, 50-55.	3.7	16
12	Reactor Scale-up for Fluidized Bed Conversion of Ethane to Vinyl Chloride. Industrial & Engineering Chemistry Research, 2010, 49, 10674-10681.	3.7	16
13	Effects of Prewetting on Bubbly- and Pulsing-Flow Regime Transitions in Trickle-Bed Reactors. Industrial & Engineering Chemistry Research, 2015, 54, 10253-10259.	3.7	11
14	A First-Principle Analysis of Ethylene Chemisorption on Copper Chloride Clusters. Journal of Physical Chemistry B, 2001, 105, 1562-1572.	2.6	10
15	Hydrodynamics of Trickle Bed Reactors with Catalyst Support Particle Size Distributions. Industrial & Engineering Chemistry Research, 2014, 53, 9027-9034.	3.7	10
16	A Novel Continuous Multiphase Reactor for Chemically Processing Polymer Fibers. Industrial & Engineering Chemistry Research, 2018, 57, 6123-6130.	3.7	10
17	Effect of packing size on packed bubble column hydrodynamics. Chemical Engineering Science, 2018, 186, 199-208.	3.8	10
18	A Hybrid Modeling Approach for Catalyst Monitoring and Lifetime Prediction. ACS Engineering Au, 2022, 2, 17-26.	5.1	10

DANIEL A HICKMAN

#	Article	IF	CITATIONS
19	Nonlinear mixed-effects models for kinetic parameter estimation with batch reactor data. Chemical Engineering Journal, 2019, 377, 119817.	12.7	9
20	The effects of particle properties, void fraction, and surface tension on the trickle-bubbly flow regime transition in trickle bed reactors. Chemical Engineering Journal, 2016, 285, 402-408.	12.7	8
21	A continuous diethanolamine dehydrogenation fixed bed catalyst and reactor system. Chemical Engineering Journal, 2015, 278, 447-453.	12.7	7
22	Methanol to hydrocarbons conversion: Why dienes and monoenes contribute differently to catalyst deactivation?. Chemical Engineering Journal, 2022, 437, 134229.	12.7	3
23	<scp>Fluidizedâ€bed</scp> reactor <scp>scaleâ€up</scp> : Reaction kinetics required. AICHE Journal, 2022, 68, .	3.6	2
24	Liquid Phase Process Characterization. , 0, , 407-429.		0