Xavier Trivelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/849837/publications.pdf

Version: 2024-02-01

186265 175258 2,785 58 28 52 h-index citations g-index papers 62 62 62 3996 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Growth of <i>Mycobacterium tuberculosis</i> biofilms containing free mycolic acids and harbouring drugâ€tolerant bacteria. Molecular Microbiology, 2008, 69, 164-174.	2.5	454
2	Manganese Pincer Complexes for the Base-Free, Acceptorless Dehydrogenative Coupling of Alcohols to Esters: Development, Scope, and Understanding. ACS Catalysis, 2017, 7, 2022-2032.	11.2	213
3	The Antimalarial Ferroquine: Role of the Metal and Intramolecular Hydrogen Bond in Activity and Resistance. ACS Chemical Biology, 2011, 6, 275-287.	3.4	167
4	Enzymatic Hydrolysis of Trehalose Dimycolate Releases Free Mycolic Acids during Mycobacterial Growth in Biofilms. Journal of Biological Chemistry, 2010, 285, 17380-17389.	3.4	113
5	Thiacetazone, an Antitubercular Drug that Inhibits Cyclopropanation of Cell Wall Mycolic Acids in Mycobacteria. PLoS ONE, 2007, 2, e1343.	2.5	112
6	Molecular dynamics studies of native and substituted cyclodextrins in different media: 1. Charge derivation and force field performances. Physical Chemistry Chemical Physics, 2011, 13, 15103.	2.8	110
7	NMR Analysis of a Tau Phosphorylation Pattern. Journal of the American Chemical Society, 2006, 128, 3575-3583.	13.7	107
8	Mechanistic Aspects of the Polymerization of Lactide Using a Highly Efficient Aluminum(III) Catalytic System. Journal of the American Chemical Society, 2017, 139, 6217-6225.	13.7	85
9	Catalytic Conversion of Alcohols into Carboxylic Acid Salts in Water: Scope, Recycling, and Mechanistic Insights. ChemSusChem, 2016, 9, 1413-1423.	6.8	84
10	A <i>Mycobacterium marinum</i> TesA mutant defective for major cell wallâ€associated lipids is highly attenuated in <i>Dictyostelium discoideum</i> and zebrafish embryos. Molecular Microbiology, 2011, 80, 919-934.	2.5	82
11	Spontaneous Assembly of Photosynthetic Supramolecular Complexes as Mediated by the Intrinsically Unstructured Protein CP12. Journal of Biological Chemistry, 2008, 283, 1831-1838.	3.4	69
12	Deeper Mechanistic Insight into Ru Pincer-Mediated Acceptorless Dehydrogenative Coupling of Alcohols: Exchanges, Intermediates, and Deactivation Species. ACS Catalysis, 2018, 8, 4719-4734.	11.2	64
13	Phosphorylation of KasB Regulates Virulence and Acid-Fastness in Mycobacterium tuberculosis. PLoS Pathogens, 2014, 10, e1004115.	4.7	63
14	Structure–activity relationships of 4-N-substituted ferroquine analogues: Time to re-evaluate the mechanism of action of ferroquine. Journal of Organometallic Chemistry, 2009, 694, 845-854.	1.8	59
15	Conformational Selection and Folding-upon-binding of Intrinsically Disordered Protein CP12 Regulate Photosynthetic Enzymes Assembly. Journal of Biological Chemistry, 2012, 287, 21372-21383.	3.4	57
16	Oxidative Transformations of Biosourced Alcohols Catalyzed by Earthâ€Abundant Transition Metals. ChemCatChem, 2017, 9, 2652-2660.	3.7	57
17	Yttrium catalysts for syndioselective \hat{I}^2 -butyrolactone polymerization: on the origin of ligand-induced stereoselectivity. Polymer Chemistry, 2013, 4, 360-367.	3.9	53
18	Antimalarial activities of ferroquine conjugates with either glutathione reductase inhibitors or glutathione depletors via a hydrolyzable amide linker. Bioorganic and Medicinal Chemistry, 2009, 17, 8048-8059.	3.0	52

#	Article	IF	CITATIONS
19	Crystal Structure and Solution NMR Dynamics of a D (Type II) Peroxiredoxin Glutaredoxin and Thioredoxin Dependent:  A New Insight into the Peroxiredoxin Oligomerism. Biochemistry, 2005, 44, 1755-1767.	2.5	50
20	Polymerization of rac ‣actide Using Achiral Iron Complexes: Access to Thermally Stable Stereocomplexes. Angewandte Chemie - International Edition, 2019, 58, 12585-12589.	13.8	47
21	Acceptorless dehydrogenative coupling of alcohols catalysed by ruthenium PNP complexes: Influence of catalyst structure and of hydrogen mass transfer. Journal of Catalysis, 2016, 340, 331-343.	6.2	46
22	Mycolic acid methyltransferase, MmaA4, is necessary for thiacetazone susceptibility in <i>Mycobacterium tuberculosis</i> . Molecular Microbiology, 2009, 71, 1263-1277.	2.5	41
23	A Versatile Iridium(III) Metallacycle Catalyst for the Effective Hydrosilylation of Carbonyl and Carboxylic Acid Derivatives. European Journal of Organic Chemistry, 2017, 2017, 4820-4826.	2.4	40
24	Characterization of the Yeast Peroxiredoxin Ahp1 in Its Reduced Active and Overoxidized Inactive Forms Using NMRâ€. Biochemistry, 2003, 42, 14139-14149.	2.5	37
25	Stabilization of Tetravalent 4f (Ce), 5d (Hf), or 5f (Th, U) Clusters by the [α-SiW ₉ O ₃₄] ^{10â€"} Polyoxometalate. Inorganic Chemistry, 2015, 54, 8271-8280.	4.0	33
26	Gold(I)â€Catalysed Asymmetric Hydroamination of Alkenes: Aâ€Silver―and Solventâ€Dependent Enantiodivergent Reaction. Chemistry - A European Journal, 2017, 23, 10777-10788.	3.3	31
27	Formation of a new type of uranium(<scp>iv</scp>) poly-oxo cluster {U ₃₈ } based on a controlled release of water <i>via</i> esterification reaction. Chemical Science, 2018, 9, 5021-5032.	7.4	31
28	Asymmetric Intramolecular Hydroamination of Alkenes in Mild and Wet Conditionsâ€"Structure and Reactivity of Cationic Binuclear Gold(I) Catalysts. ChemCatChem, 2014, 6, 2235-2239.	3.7	28
29	Characterization and Luminescence Properties of Lanthanide-Based Polynuclear Complexes Nanoaggregates. Inorganic Chemistry, 2015, 54, 6043-6054.	4.0	28
30	Efficient and Selective Hydrosilylation of Secondary and Tertiary Amides Catalyzed by an Iridium(III) Metallacycle: Development and Mechanistic Investigation. ChemCatChem, 2017, 9, 2009-2017.	3.7	28
31	Structural Analysis of an Unusual BioactiveN-Acylated Lipo-Oligosaccharide LOS-IV inMycobacterium marinum. Journal of the American Chemical Society, 2010, 132, 16073-16084.	13.7	27
32	Deciphering the Mechanism of the Nickel-Catalyzed Hydroalkoxylation Reaction: A Combined Experimental and Computational Study. ACS Catalysis, 2017, 7, 6915-6923.	11.2	26
33	Domains of BclA, the major surface glycoprotein of the <i>B. cereus < /i>exosporium: glycosylation patterns and role in spore surface properties. Biofouling, 2011, 27, 751-761.</i>	2.2	23
34	Gold(<scp>i</scp>) catalysed regio- and stereoselective intermolecular hydroamination of internal alkynes: towards functionalised azoles. Organic and Biomolecular Chemistry, 2019, 17, 3805-3811.	2.8	23
35	Mycobacterium lutetiense sp. nov., Mycobacterium montmartrense sp. nov. and Mycobacterium arcueilense sp. nov., members of a novel group of non-pigmented rapidly growing mycobacteria recovered from a water distribution system. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 3694-3702.	1.7	23
36	Selective Conversion of Concentrated Feeds of Furfuryl Alcohol to Alkyl Levulinates Catalyzed by Metal Triflates. ACS Sustainable Chemistry and Engineering, 2018, 6, 4405-4411.	6.7	21

#	Article	IF	Citations
37	Temperature-dependent Regulation of Mycolic Acid Cyclopropanation in Saprophytic Mycobacteria. Journal of Biological Chemistry, 2010, 285, 21698-21707.	3.4	19
38	Glycosylation of BclA Glycoprotein from Bacillus cereus and Bacillus anthracis Exosporium Is Domain-specific. Journal of Biological Chemistry, 2016, 291, 9666-9677.	3.4	19
39	Molecular Phenotyping of Mannosyltransferases-Deficient Candida albicans Cells by High-Resolution Magic Angle Spinning NMR. Journal of Biochemistry, 2009, 145, 413-419.	1.7	16
40	Uranyl Cation Incorporation in the [P ₈ W ₄₈ O ₁₈₄] ^{40–} Macrocycle Phosphopolytungstate. Inorganic Chemistry, 2019, 58, 1091-1099.	4.0	16
41	Influence of the pH on the Condensation of Tetravalent Cerium Cations in Association with [αâ€SiW ₉ O ₃₄ sup>10â€" Leading to the Formation of a Ce ₆ O ₄ (OH) ₄ Core. European Journal of Inorganic Chemistry, 2016, 2016, 5373-5379.	2.0	15
42	Catalytic reductive deoxygenation of esters to ethers driven by hydrosilane activation through non-covalent interactions with a fluorinated borate salt. Catalysis Science and Technology, 2020, 10, 4586-4592.	4.1	13
43	Glycopeptidolipid glycosylation controls surface properties and pathogenicity in Mycobacterium abscessus. Cell Chemical Biology, 2022, 29, 910-924.e7.	5.2	12
44	Probing the aluminum complexation by Siberian riverine organic matter using solid-state DNP-NMR. Chemical Geology, 2017, 452, 1-8.	3.3	11
45	Heteroleptic Ruthenium(II) Complexes with Bathophenanthroline and Bathophenanthroline Disulfonate Disodium Salt as Fluorescent Dyes for In-Gel Protein Staining. Inorganic Chemistry, 2020, 59, 4527-4535.	4.0	10
46	Transferring redox regulation properties from sorghum NADP-malate dehydrogenase to Thermus NAD-malate dehydrogenase. Photosynthesis Research, 2006, 89, 213-223.	2.9	9
47	Formation of \hat{I}^2 -Lactoglobulin Aggregates from Quite, Unfolded Conformations upon Heat Activation. Langmuir, 2019, 35, 446-452.	3.5	8
48	Polymerization of rac â€Lactide Using Achiral Iron Complexes: Access to Thermally Stable Stereocomplexes. Angewandte Chemie, 2019, 131, 12715-12719.	2.0	7
49	Evaluation of95Mo Nuclear Shielding and Chemical Shift of [Mo6X14]2–Clusters in the Liquid Phase. Inorganic Chemistry, 2015, 54, 7673-7683.	4.0	6
50	NMR Reveals the Interplay among the AMSH SH3 Binding Motif, STAM2, and Lys63-Linked Diubiquitin. Journal of Molecular Biology, 2016, 428, 4544-4558.	4.2	6
51	Improved reactivity in the conversion of nitrile-functionalized olefins by metathesis. Catalysis Communications, 2016, 77, 75-78.	3.3	6
52	Bottom-up synthesis of functionalized {Ce4(SiW9O34)2(l)2} polyoxometalates. CrystEngComm, 2018, 20, 7144-7155.	2.6	6
53	Oneâ€Pot Controlled Reduction of Conjugated Amides by Sequential Double Hydrosilylation Catalyzed by an Iridium(III) Metallacycle. European Journal of Organic Chemistry, 2020, 2020, 6212-6220.	2.4	6
54	Isonitrile ruthenium and iron PNP complexes: synthesis, characterization and catalytic assessment for base-free dehydrogenative coupling of alcohols. Dalton Transactions, 2021, 50, 10067-10081.	3.3	5

#	Article	IF	CITATION
55	NMR of Redox Proteins of Plants, Yeasts and Photosynthetic Bacteria. Photosynthesis Research, 2004, 79, 357-367.	2.9	4
56	Direct conversion of uranium dioxide UO ₂ to uranium tetrafluoride UF ₄ using the fluorinated ionic liquid [Bmim][PF ₆]. Dalton Transactions, 2020, 49, 274-278.	3.3	4
57	Letter to the Editor:1H,13C and15N backbone resonance assignments of the dimeric yeast peroxiredoxin YLR109w. Journal of Biomolecular NMR, 2004, 28, 95-96.	2.8	2
58	1H, 13C and 15N chemical shift backbone resonance NMR assignment of tobacco calmodulin 2. Biomolecular NMR Assignments, 2022, , 1.	0.8	0