
Simon M Smart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8498092/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Woodland, cropland and hedgerows promote pollinator abundance in intensive grassland landscapes, with saturating benefits of flower cover. Journal of Applied Ecology, 2022, 59, 342-354.	1.9	13
2	Landscape-scale drivers of pollinator communities may depend on land-use configuration. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210172.	1.8	3
3	Mycorrhizal type of woody plants influences understory species richness in British broadleaved woodlands. New Phytologist, 2022, 235, 2046-2053.	3.5	3
4	Soil health cluster analysis based on national monitoring of soil indicators. European Journal of Soil Science, 2021, 72, 2414-2429.	1.8	26
5	Differential effects of fertilisers on pollination and parasitoid interaction networks. Journal of Animal Ecology, 2021, 90, 404-414.	1.3	4
6	Long-term effects of atmospheric deposition on British plant species richness. Environmental Pollution, 2021, 281, 117017.	3.7	6
7	Designing a survey to monitor multi-scale impacts of agri-environment schemes on mobile taxa. Journal of Environmental Management, 2021, 290, 112589.	3.8	4
8	Integrated ecological monitoring in Wales: the Glastir Monitoring and Evaluation Programme field survey. Earth System Science Data, 2021, 13, 4155-4173.	3.7	3
9	Comment on Pescott & Jitlal 2020: Failure to account for measurement error undermines their conclusion of a weak impact of nitrogen deposition on plant species richness. PeerJ, 2021, 9, e10632.	0.9	2
10	The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx). Methods in Ecology and Evolution, 2020, 11, 22-37.	2.2	68
11	Light availability and landâ€use history drive biodiversity and functional changes in forest herb layer communities. Journal of Ecology, 2020, 108, 1411-1425.	1.9	49
12	Longâ€ŧerm trends in the distribution, abundance and impact of native "injurious―weeds. Applied Vegetation Science, 2020, 23, 635-647.	0.9	9
13	Release from sheepâ€grazing appears to put some heart back into upland vegetation: A comparison of nutritional properties of plant species in longâ€ŧerm grazing experiments. Annals of Applied Biology, 2020, 177, 152-162.	1.3	8
14	Zones of influence for soil organic matter dynamics: A conceptual framework for data and models. Global Change Biology, 2019, 25, 3996-4007.	4.2	13
15	Measured estimates of semi-natural terrestrial NPP in Great Britain: comparison with modelled values, and dependence on atmospheric nitrogen deposition. Biogeochemistry, 2019, 144, 215-227.	1.7	14
16	Plant and soil communities are associated with the response of soil water repellency to environmental stress. Science of the Total Environment, 2019, 687, 929-938.	3.9	41
17	Exploring social-ecological systems in the transition from war to peace: A scenario-based approach to forecasting the post-conflict landscape in a Colombian region. Science of the Total Environment, 2019, 695, 133874.	3.9	15
18	Assessment of a large number of empirical plant species niche models by elicitation of knowledge from two national experts. Ecology and Evolution, 2019, 9, 12858-12868.	0.8	5

#	Article	IF	CITATIONS
19	The design, launch and assessment of a new volunteer-based plant monitoring scheme for the United Kingdom. PLoS ONE, 2019, 14, e0215891.	1.1	15
20	Modelâ€based hypervolumes for complex ecological data. Ecology, 2019, 100, e02676.	1.5	10
21	Aligning landscape structure with ecosystem services along an urban–rural gradient. Trade-offs and transitions towards cultural services. Landscape Ecology, 2019, 34, 1525-1545.	1.9	39
22	Upscaling biodiversity: estimating the species–area relationship from small samples. Ecological Monographs, 2018, 88, 170-187.	2.4	49
23	The Ecology of British Upland Landscapes. I. Composition of Landscapes, Habitats, Vegetation and Species. Journal of Landscape Ecology(Czech Republic), 2018, 11, 120-139.	0.2	4
24	The Ecology of British Upland Landscapes. Ii. The Influence of Policy on The Current Character of The Uplands and The Potential for Change. Journal of Landscape Ecology(Czech Republic), 2018, 11, 140-154.	0.2	7
25	Ecological landscape elements: long-term monitoring in Great Britain, the Countryside Survey 1978–2007 and beyond. Earth System Science Data, 2018, 10, 745-763.	3.7	10
26	Land cover and vegetation data from an ecological survey of "key habitat" landscapes in England, 1992–1993. Earth System Science Data, 2018, 10, 899-918.	3.7	2
27	Leaf dry matter content is better at predicting aboveâ€ground net primary production than specific leaf area. Functional Ecology, 2017, 31, 1336-1344.	1.7	57
28	Abundance distributions for tree species in Great Britain: AÂtwoâ€stage approach to modeling abundance using species distribution modeling and random forest. Ecology and Evolution, 2017, 7, 1043-1056.	0.8	37
29	A method for the objective selection of landscapeâ€scale study regions and sites at the national level. Methods in Ecology and Evolution, 2017, 8, 1468-1476.	2.2	23
30	Changes in the frequency of common plant species across linear features in Wales from 1990 to 2016: implications for potential delivery of ecosystem services. New Journal of Botany, 2017, 7, 112-124.	0.2	5
31	Regional-Scale High Spatial Resolution Mapping of Aboveground Net Primary Productivity (ANPP) from Field Survey and Landsat Data: A Case Study for the Country of Wales. Remote Sensing, 2017, 9, 801.	1.8	11
32	Long-term vegetation monitoring in Great Britain – the Countryside Survey 1978–2007 and beyond. Earth System Science Data, 2017, 9, 445-459.	3.7	23
33	Drivers of vegetation change in grasslands of the Sheffield region, northern England, between 1965 and 2012/13. Applied Vegetation Science, 2016, 19, 187-195.	0.9	20
34	How well is current plant trait composition predicted by modern and historical forest spatial configuration?. Ecography, 2016, 39, 67-76.	2.1	9
35	Legacy effects of grassland management on soil carbon to depth. Global Change Biology, 2016, 22, 2929-2938.	4.2	106
36	Spatial patterns and environmental constraints on ecosystem services at a catchment scale. Science of the Total Environment, 2016, 572, 1586-1600.	3.9	44

#	Article	IF	CITATIONS
37	Evidence for increases in vegetation species richness across UK Environmental Change Network sites linked to changes in air pollution and weather patterns. Ecological Indicators, 2016, 68, 52-62.	2.6	31
38	Empirical realised niche models for British coastal plant species. Journal of Coastal Conservation, 2016, 20, 107-116.	0.7	3
39	Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature, 2016, 530, 85-88.	13.7	320
40	Evidence for differential effects of reduced and oxidised nitrogen deposition on vegetation independent of nitrogen load. Environmental Pollution, 2016, 208, 890-897.	3.7	49
41	How will the semi-natural vegetation of the UK have changed by 2030 given likely changes in nitrogen deposition?. Environmental Pollution, 2016, 208, 879-889.	3.7	16
42	Using Qualitative and Quantitative Methods to Choose a Habitat Quality Metric for Air Pollution Policy Evaluation. PLoS ONE, 2016, 11, e0161085.	1.1	11
43	Monitoring Soil Natural Capital and Ecosystem Services by Using Large-Scale Survey Data. , 2015, , 127-155.		2
44	Challenging the view that invasive non-native plants are not a significant threat to the floristic diversity of Great Britain. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2988-9.	3.3	32
45	Niche models for British plants and lichens obtained using an ensemble approach. New Journal of Botany, 2015, 5, 89-100.	0.2	14
46	Common plants as indicators of habitat suitability for rare plants; quantifying the strength of the association between threatened plants and their neighbours. New Journal of Botany, 2015, 5, 72-88.	0.2	4
47	Distribution of crop wild relatives of conservation priority in the UK landscape. Biological Conservation, 2015, 191, 444-451.	1.9	57
48	Field Survey Based Models for Exploring Nitrogen and Acidity Effects on Plant Species Diversity and Assessing Long-Term Critical Loads. Environmental Pollution, 2015, , 297-326.	0.4	6
49	Woodland Survey of Great Britain 1971–2001. Earth System Science Data, 2015, 7, 203-214.	3.7	9
50	The Landscape Ecological Impact of Afforestation on the British Uplands and Some Initiatives to Restore Native Woodland Cover. Journal of Landscape Ecology(Czech Republic), 2014, 7, 5-24.	0.2	23
51	Traits of plant communities in fragmented forests: the relative influence of habitat spatial configuration and local abiotic conditions. Journal of Ecology, 2014, 102, 632-640.	1.9	28
52	Inertia in an ombrotrophic bog ecosystem in response to 9Âyears' realistic perturbation by wet deposition of nitrogen, separated by form. Global Change Biology, 2014, 20, 566-580.	4.2	29
53	Phosphorus availability explains patterns in a productivity indicator in temperate semi-natural vegetation. Environmental Sciences: Processes and Impacts, 2014, 16, 2156-2164.	1.7	9
54	Quantifying the impact of an extreme climate event on species diversity in fragmented temperate forests: the effect of the <scp>O</scp> ctober 1987 storm on <scp>B</scp> ritish broadleaved woodlands. Journal of Ecology, 2014, 102, 1273-1287.	1.9	28

#	Article	IF	CITATIONS
55	Nitrogen deposition effects on plant species diversity; threshold loads from field data. Environmental Pollution, 2013, 179, 218-223.	3.7	21
56	Exploring the ecological constraints to multiple ecosystem service delivery and biodiversity. Journal of Applied Ecology, 2013, 50, 561-571.	1.9	102
57	Identifying the trait syndromes of conservation indicator species: how distinct are <scp>B</scp> ritish ancient woodland indicator plants from other woodland species?. Applied Vegetation Science, 2013, 16, 667-675.	0.9	39
58	A functional classification of herbaceous hedgerow vegetation for setting restoration objectives. Biodiversity and Conservation, 2013, 22, 701-717.	1.2	14
59	Native dominants in British woodland – a potential cause of reduced species-richness?. New Journal of Botany, 2013, 3, 156-168.	0.2	14
60	Comment on "Productivity Is a Poor Predictor of Plant Species Richness― Science, 2012, 335, 1441-1441.	6.0	49
61	Clarity or confusion? – Problems in attributing large-scale ecological changes to anthropogenic drivers. Ecological Indicators, 2012, 20, 51-56.	2.6	29
62	Terricolous lichens as indicators of nitrogen deposition: Evidence from national records. Ecological Indicators, 2012, 20, 196-203.	2.6	18
63	Impacts of nitrogen deposition on vascular plants in Britain: an analysis of two national observation networks. Biogeosciences, 2011, 8, 3501-3518.	1.3	27
64	Direct and indirect effects of nitrogen deposition on species composition change in calcareous grasslands. Global Change Biology, 2011, 17, 1871-1883.	4.2	103
65	A new net mineralizable nitrogen assay improves predictions of floristic composition. Journal of Vegetation Science, 2011, 22, 251-261.	1.1	22
66	Aliens or natives: who are the â€~thugs' in British woods?. Kew Bulletin, 2010, 65, 583-594.	0.4	10
67	Empirical realised niche models for British higher and lower plants - development and preliminary testing. Journal of Vegetation Science, 2010, 21, 643.	1.1	25
68	Nitrogen deposition causes widespread loss of species richness in British habitats. Global Change Biology, 2010, 16, 671-679.	4.2	259
69	Linkages of plant traits to soil properties and the functioning of temperate grassland. Journal of Ecology, 2010, 98, 1074-1083.	1.9	308
70	Use of dynamic soil–vegetation models to assess impacts of nitrogen deposition on plant species composition: an overview. Ecological Applications, 2010, 20, 60-79.	1.8	88
71	Habitat invasions by alien plants: a quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. Journal of Applied Ecology, 2008, 45, 448-458.	1.9	450
72	Nitrogen deposition increases the acquisition of phosphorus and potassium by heather Calluna vulgaris. Environmental Pollution, 2008, 155, 201-207.	3.7	47

#	Article	IF	CITATIONS
73	Assessing the impacts of agricultural intensification on biodiversity: a British perspective. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 777-787.	1.8	227
74	Declines in forage availability for bumblebees at a national scale. Biological Conservation, 2006, 132, 481-489.	1.9	302
75	Biotic homogenization and changes in species diversity across human-modified ecosystems. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2659-2665.	1.2	272
76	Spatial relationships between intensive land cover and residual plant species diversity in temperate farmed landscapes. Journal of Applied Ecology, 2006, 43, 1128-1137.	1.9	43
77	Relationships between the species composition of forest field-layer vegetation and environmental drivers, assessed using a national scale survey. Journal of Ecology, 2006, 94, 383-401.	1.9	40
78	Interactions between non-native plant species and the floristic composition of common habitats. Journal of Ecology, 2006, 94, 1052-1060.	1.9	77
79	Detecting the signal of atmospheric N deposition in recent national-scale vegetation change across Britain. Water, Air and Soil Pollution, 2005, 4, 269-278.	0.8	5
80	Large-scale changes in the abundance of common higher plant species across Britain between 1978, 1990 and 1998 as a consequence of human activity: Tests of hypothesised changes in trait representation. Biological Conservation, 2005, 124, 355-371.	1.9	103
81	Bias in Ellenberg indicator values — problems with detection of the effect of vegetation type. Journal of Vegetation Science, 2004, 15, 843-846.	1.1	31
82	Detecting the Signal of Atmospheric N Deposition in Recent National-Scale Vegetation Change Across Britain. Water, Air and Soil Pollution, 2004, 4, 269-278.	0.8	23
83	Bias in Ellenberg indicator values – problems with detection of the effect of vegetation type. Journal of Vegetation Science, 2004, 15, 843.	1.1	27
84	Assessing stock and change in land cover and biodiversity in GB: an introduction to Countryside Survey 2000. Journal of Environmental Management, 2003, 67, 207-218.	3.8	87
85	National-scale vegetation change across Britain; an analysis of sample-based surveillance data from the Countryside Surveys of 1990 and 1998. Journal of Environmental Management, 2003, 67, 239-254.	3.8	86
86	Changing landscapes, habitats and vegetation diversity across Great Britain. Journal of Environmental Management, 2003, 67, 267-281.	3.8	74
87	Locating eutrophication effects across British vegetation between 1990 and 1998. Global Change Biology, 2003, 9, 1763-1774.	4.2	67
88	Do field boundaries act as refugia for grassland plant species diversity in intensively managed agricultural landscapes in Britain?. Agriculture, Ecosystems and Environment, 2002, 91, 73-87.	2.5	62
89	Quantifying changes in abundance of food plants for butterfly larvae and farmland birds. Journal of Applied Ecology, 2000, 37, 398-414.	1.9	60
			·

6