
Guo-Qiang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8497818/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Raised solubility in SnTe by GeMnTe2 alloying enables converged valence bands, low thermal conductivity, and high thermoelectric performance. Nano Energy, 2022, 94, 106940.	8.2	22
2	Boosting the Thermoelectric Performance of PbSe from the Band Convergence Driven By Spinâ€Orbit Coupling. Advanced Energy Materials, 2022, 12, 2103287.	10.2	13
3	Optimized thermoelectric properties of Bi _{0.48} Sb _{1.52} Te ₃ /BN composites. Journal of Materials Chemistry C, 2022, 10, 3172-3177.	2.7	5
4	A high-efficiency GeTe-based thermoelectric module for low-grade heat recovery. Journal of Materials Chemistry A, 2022, 10, 7677-7683.	5.2	9
5	Spin-glass behavior and magnetocaloric properties of high-entropy perovskite oxides. Applied Physics Letters, 2022, 120, .	1.5	10
6	Synergistically Optimized Thermal Conductivity and Carrier Concentration in GeTe by Bi–Se Codoping. ACS Applied Materials & Interfaces, 2022, 14, 14359-14366.	4.0	9
7	Origin of the unique thermoelectric transport in Mg ₃ (Sb,Bi) ₂ : absence of d-orbital bonding in crystal cohesion. Journal of Materials Chemistry A, 2022, 10, 11131-11136.	5.2	5
8	Enhancement of the efficiency and thermal stability of the double perovskite Cs ₂ AgInCl ₆ single crystal by Sc substitution. Materials Advances, 2022, 3, 4381-4386.	2.6	3
9	Synergistic Manipulation of Interdependent Thermoelectric Parameters in SnTe–AgBiTe ₂ Alloys by Mn Doping. ACS Applied Materials & Interfaces, 2022, 14, 29032-29038.	4.0	8
10	Band flattening and phonon-defect scattering in cubic SnSe–AgSbTe2 alloy for thermoelectric enhancement. Materials Today Physics, 2021, 16, 100298.	2.9	20
11	Enhanced thermoelectric performance of p-type sintered BiSbTe-based composites with AgSbTe2 addition. Ceramics International, 2021, 47, 725-731.	2.3	22
12	Designing High Entropy Structure in Thermoelectrics. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 399.	0.6	2
13	Refined band structure plus enhanced phonon scattering realizes thermoelectric performance optimization in Cul–Mn codoped SnTe. Journal of Materials Chemistry A, 2021, 9, 13065-13070.	5.2	30
14	Improved Thermoelectric Properties of BiSbTe-AgBiSe ₂ Alloys by Suppressing Bipolar Excitation. ACS Applied Energy Materials, 2021, 4, 2944-2950.	2.5	17
15	Anomalous Thermopower and High <i>ZT</i> in GeMnTe ₂ Driven by Spin's Thermodynamic Entropy. Research, 2021, 2021, 1949070.	2.8	4
16	Achieving High Thermoelectric Performance of n-Type Bi ₂ Te _{2.79} Se _{0.21} Sintered Materials by Hot-Stacked Deformation. ACS Applied Materials & Interfaces, 2021, 13, 15429-15436.	4.0	18
17	Thermoelectric Performance Optimization and Phase Transition of GeTe by Alloying with Orthorhombic CuSbSe ₂ . ACS Applied Energy Materials, 2021, 4, 4242-4247.	2.5	14
18	Enhanced Thermoelectric and Mechanical Performances in Sintered Bi _{0.48} Sb _{1.52} Te ₃ –AgSbSe ₂ Composite. ACS Applied Materials & Interfaces, 2021, 13, 24937-24944.	4.0	23

GUO-QIANG LIU

#	Article	IF	CITATIONS
19	Ultralow thermal conductivity and improved ZT of CuInTe2 by high-entropy structure design. Materials Today Physics, 2021, 18, 100394.	2.9	21
20	Synergistic effects of B-In codoping in zone-melted Bi0.48Sb1.52Te3-based thermoelectric. Chemical Engineering Journal, 2021, 420, 130381.	6.6	20
21	Improvement of thermoelectric properties of SnTe by Mn Bi codoping. Chemical Engineering Journal, 2021, 421, 127795.	6.6	20
22	Expand band gap and suppress bipolar excitation to optimize thermoelectric performance of Bi0.35Sb1.65Te3 sintered materials. Materials Today Physics, 2021, 21, 100544.	2.9	15
23	Broadening the optimum thermoelectric power generation range of p-type sintered Bi0.4Sb1.6Te3 by suppressing bipolar effect. Chemical Engineering Journal, 2021, 426, 131853.	6.6	16
24	Synergistically Optimized Thermoelectric and Mechanical Properties in p â€₹ype BiSbTe by a Microdroplet Deposition Technique. Energy Technology, 2021, 9, 2001024.	1.8	1
25	Dramatically enhanced Seebeck coefficient in GeMnTe2–NaBiTe2 alloys by tuning the Spin's thermodynamic entropy. Physical Chemistry Chemical Physics, 2021, 23, 17866-17872.	1.3	5
26	Entropy Engineering Realized Ultralow Thermal Conductivity and High Seebeck Coefficient in Lead-Free SnTe. ACS Applied Energy Materials, 2021, 4, 12738-12744.	2.5	10
27	Optimized Thermoelectric Properties of Bi _{0.48} Sb _{1.52} Te ₃ through AgCuTe Doping for Low-Grade Heat Harvesting. ACS Applied Materials & Interfaces, 2021, 13, 57514-57520.	4.0	19
28	Unusually high Seebeck coefficient arising from temperature-dependent carrier concentration in PbSe–AgSbSe ₂ alloys. Journal of Materials Chemistry C, 2021, 9, 17365-17370.	2.7	5
29	Enhanced Thermoelectric Properties of p-Type Bi _{0.48} Sb _{1.52} Te ₃ /Sb ₂ Te ₃ Composite. ACS Applied Materials & Interfaces, 2020, 12, 52922-52928.	4.0	18
30	Improved thermoelectric performance in PbSe–AgSbSe2 by manipulating the spin-orbit coupling effects. Nano Energy, 2020, 78, 105232.	8.2	22
31	Bi–Zn codoping in GeTe synergistically enhances band convergence and phonon scattering for high thermoelectric performance. Journal of Materials Chemistry A, 2020, 8, 21642-21648.	5.2	36
32	Boosted carrier mobility and enhanced thermoelectric properties of polycrystalline Na _{0.03} Sn _{0.97} Se by liquid-phase hot deformation. Materials Advances, 2020, 1, 1092-1098.	2.6	3
33	Investigating the thermoelectric performance of n-type SnSe: the synergistic effect of NbCl ₅ doping and dislocation engineering. Journal of Materials Chemistry C, 2020, 8, 13244-13252.	2.7	31
34	Understanding the Band Engineering in Mg ₂ Siâ€Based Systems from Wannierâ€Orbital Analysis. Annalen Der Physik, 2020, 532, 1900543.	0.9	5
35	Phonon Engineering for Thermoelectric Enhancement of p-Type Bismuth Telluride by a Hot-Pressing Texture Method. ACS Applied Materials & Interfaces, 2020, 12, 31612-31618.	4.0	41
36	Effects of AgBiSe2 on thermoelectric properties of SnTe. Chemical Engineering Journal, 2020, 390, 124585.	6.6	24

Guo-Qiang Liu

#	Article	IF	CITATIONS
37	Fermi-surface dynamics and high thermoelectric performance along the out-of-plane direction in n-type SnSe crystals. Energy and Environmental Science, 2020, 13, 616-621.	15.6	32
38	Synergistically Optimized Thermoelectric Performance in Bi _{0.48} Sb _{1.52} Te ₃ by Hot Deformation and Cu Doping. ACS Applied Energy Materials, 2019, 2, 6714-6719.	2.5	37
39	Texture Development and Grain Alignment of Hotâ€Pressed Tetradymite Bi _{0.48} Sb _{1.52} Te ₃ via Powder Molding. Energy Technology, 2019, 7, 1900814.	1.8	11
40	Optimized orientation and enhanced thermoelectric performance in Sn _{0.97} Na _{0.03} Se with Te addition. Journal of Materials Chemistry C, 2019, 7, 2653-2658.	2.7	19
41	Ultralow Lattice Thermal Conductivity in SnTe by Manipulating the Electron–Phonon Coupling. Journal of Physical Chemistry C, 2019, 123, 15996-16002.	1.5	36
42	Thermoelectric (Bi,Sb)2Te3–Ge0.5Mn0.5Te composites with excellent mechanical properties. Journal of Materials Chemistry A, 2019, 7, 9241-9246.	5.2	37
43	Band engineering and crystal field screening in thermoelectric Mg ₃ Sb ₂ . Journal of Materials Chemistry A, 2019, 7, 8922-8928.	5.2	36
44	Investigation on structure and thermoelectric properties in p-type Bi0.48Sb1.52Te3 via PbTe incorporating. Journal of Materials Science: Materials in Electronics, 2018, 29, 7701-7706.	1.1	9
45	Synergetic optimization of electronic and thermal transport for high-performance thermoelectric GeSe–AgSbTe ₂ alloy. Journal of Materials Chemistry A, 2018, 6, 8215-8220.	5.2	38
46	Thermoelectric properties of In-Hg co-doping in SnTe: Energy band engineering. Journal of Materiomics, 2018, 4, 62-67.	2.8	44
47	Thermoelectric properties of textured polycrystalline Na _{0.03} Sn _{0.97} Se enhanced by hot deformation. Journal of Materials Chemistry A, 2018, 6, 23730-23735.	5.2	27
48	Designing band engineering for thermoelectrics starting from the periodic table of elements. Materials Today Physics, 2018, 7, 35-44.	2.9	75
49	Microstructure engineering beyond SnSe1-xSx solid solution for high thermoelectric performance. Journal of Materiomics, 2018, 4, 321-328.	2.8	18
50	Enhanced thermoelectric performance in p-type polycrystalline SnSe by Cu doping. Journal of Materials Science: Materials in Electronics, 2018, 29, 18727-18732.	1.1	17
51	Nontrivial thermoelectric behavior in cubic SnSe driven by spin-orbit coupling. Nano Energy, 2018, 51, 649-655.	8.2	37
52	Manipulating Band Convergence and Resonant State in Thermoelectric Material SnTe by Mn–In Codoping. ACS Energy Letters, 2017, 2, 1203-1207.	8.8	98
53	Enhanced thermoelectric performance in n-type polycrystalline SnSe by PbBr ₂ doping. RSC Advances, 2017, 7, 17906-17912.	1.7	40
54	Study on Thermoelectric Properties of Polycrystalline SnSe by Ge Doping. Journal of Electronic Materials, 2017, 46, 3182-3186.	1.0	29

GUO-QIANG LIU

#	Article	IF	CITATIONS
55	Texturing degree boosts thermoelectric performance of silver-doped polycrystalline SnSe. NPG Asia Materials, 2017, 9, e426-e426.	3.8	49
56	Optimizing the thermoelectric performance of In–Cd codoped SnTe by introducing Sn vacancies. Journal of Materials Chemistry C, 2017, 5, 7504-7509.	2.7	46
57	Single Crystal Structure Study of Type I Clathrate \$\$hbox {K}_{8}hbox {Zn}_4hbox {Sn}_{42}\$\$ K 8 Zn 4 Sn 42 and \$\$hbox {K}_8hbox {In}_8hbox {Sn}_{38}\$\$ K 8 In 8 Sn 38. Journal of Electronic Materials, 2017, 46, 2765-2769.	1.0	3
58	Optimization of thermoelectric properties in <i>n</i> -type SnSe doped with BiCl3. Applied Physics Letters, 2016, 108, .	1.5	103
59	Synthesis of SnTe/AgSbSe 2 nanocomposite as a promising lead-free thermoelectric material. Journal of Materiomics, 2016, 2, 165-171.	2.8	31
60	A first-principles study on the phonon transport in layered BiCuOSe. Scientific Reports, 2016, 6, 21035.	1.6	52
61	Enhanced thermopower in rock-salt SnTe–CdTe from band convergence. RSC Advances, 2016, 6, 32189-32192.	1.7	72
62	Enhanced thermoelectric performance in p-type polycrystalline SnSe benefiting from texture modulation. Journal of Materials Chemistry C, 2016, 4, 1201-1207.	2.7	125
63	High thermoelectric performance in two-dimensional graphyne sheets predicted by first-principles calculations. Physical Chemistry Chemical Physics, 2015, 17, 22872-22881.	1.3	77
64	Enhanced power factor in the promising thermoelectric material SnPb _x Te prepared via zone-melting. RSC Advances, 2015, 5, 59379-59383.	1.7	13
65	Reduced iron ordered moment and negative TC-pressure coefficient in iron-arsenide superconductors. European Physical Journal B, 2015, 88, 1.	0.6	0
66	Structure and thermoelectric properties of the n-type clathrate Ba8Cu5.1Ge40.2Sn0.7. Journal of Materials Chemistry A, 2015, 3, 19100-19106.	5.2	17
67	Valence band engineering and thermoelectric performance optimization in SnTe by Mn-alloying via a zone-melting method. Journal of Materials Chemistry A, 2015, 3, 19974-19979.	5.2	141
68	Exotic spin-orbital Mott insulating states in BalrO3. Physical Review B, 2013, 87, .	1.1	16