Jichao Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8497659/publications.pdf

Version: 2024-02-01

١			430754	501076	
	30	1,866	18	28	
	papers	citations	h-index	g-index	
	38	38	38	2941	
	30	30	30	2711	
	all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Three-axis classification of mouse lung mesenchymal cells reveals two populations of myofibroblasts. Development (Cambridge), 2022, 149 , .	1.2	18
2	Intermediary Role of Lung Alveolar Type 1 Cells in Epithelial Repair upon Sendai Virus Infection. American Journal of Respiratory Cell and Molecular Biology, 2022, 67, 389-401.	1.4	8
3	Airway Mucus Dysfunction in COVID-19. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 1304-1306.	2.5	1
4	A cellâ€centric view of lung alveologenesis. Developmental Dynamics, 2021, 250, 482-496.	0.8	23
5	Single-Cell Expression Landscape of SARS-CoV-2 Receptor ACE2 and Host Proteases in Normal and Malignant Lung Tissues from Pulmonary Adenocarcinoma Patients. Cancers, 2021, 13, 1250.	1.7	7
6	Endothelial cells in the lung. , 2021, , 144-157.		3
7	Resolving the Spatial and Cellular Architecture of Lung Adenocarcinoma by Multiregion Single-Cell Sequencing. Cancer Discovery, 2021, 11, 2506-2523.	7.7	68
8	Differential chromatin binding of the lung lineage transcription factor NKX2-1 resolves opposing murine alveolar cell fates in vivo. Nature Communications, 2021, 12, 2509.	5.8	58
9	Redundant and additive functions of the four Lef/Tcf transcription factors in lung epithelial progenitors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12182-12191.	3.3	18
10	Quantitative single-cell interactomes in normal and virus-infected mouse lungs. DMM Disease Models and Mechanisms, 2020, 13 , .	1.2	13
11	Epithelial Vegfa Specifies a Distinct Endothelial Population in the Mouse Lung. Developmental Cell, 2020, 52, 617-630.e6.	3.1	142
12	Inducible epithelial resistance against acute Sendai virus infection prevents chronic asthmaâ€like lung disease in mice. British Journal of Pharmacology, 2020, 177, 2256-2273.	2.7	14
13	KMT2D Deficiency Impairs Super-Enhancers to Confer a Glycolytic Vulnerability in Lung Cancer. Cancer Cell, 2020, 37, 599-617.e7.	7.7	137
14	Transcriptional control of lung alveolar type 1 cell development and maintenance by NK homeobox 2-1. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20545-20555.	3.3	86
15	Beta-Catenin maintains lung epithelial progenitors after lung specification. Development (Cambridge), 2018, 145, .	1.2	61
16	IL22 Promotes <i>Kras</i> -Mutant Lung Cancer by Induction of a Protumor Immune Response and Protection of Stemness Properties. Cancer Immunology Research, 2018, 6, 788-797.	1.6	59
17	Origin and regulation of a lung repair kit. Nature Cell Biology, 2017, 19, 885-886.	4.6	13
18	Complement Component 3 Is Regulated by TWIST1 and Mediates Epithelial–Mesenchymal Transition. Journal of Immunology, 2016, 196, 1412-1418.	0.4	66

#	Article	IF	CITATIONS
19	SNAP23 is selectively expressed in airway secretory cells and mediates baseline and stimulated mucin secretion. Bioscience Reports, 2015, 35, .	1.1	23
20	Development and plasticity of alveolar type 1 cells. Development (Cambridge), 2015, 143, 54-65.	1.2	112
21	The Regulation of Branching Morphogenesis in the Developing Lung. Pancreatic Islet Biology, 2015, , 3-16.	0.1	1
22	Developmental programs of lung epithelial progenitors: a balanced progenitor model. Wiley Interdisciplinary Reviews: Developmental Biology, 2014, 3, 331-347.	5.9	25
23	Two nested developmental waves demarcate a compartment boundary in the mouse lung. Nature Communications, 2014, 5, 3923.	5.8	101
24	Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis. Nature Communications, 2014, 5, 4342.	5.8	109
25	Lung epithelial branching program antagonizes alveolar differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18042-18051.	3.3	179
26	Integrin Beta 1 Suppresses Multilayering of a Simple Epithelium. PLoS ONE, 2012, 7, e52886.	1.1	37
27	Estrogen-Related Receptor $\hat{l}^2/NR3B2$ Controls Epithelial Cell Fate and Endolymph Production by the Stria Vascularis. Developmental Cell, 2007, 13, 325-337.	3.1	125
28	Genetic Ablation of Cone Photoreceptors Eliminates Retinal Folds in theRetinal Degeneration 7 (rd7) Mouse., 2007, 48, 2799.		30
29	Effects of L1 retrotransposon insertion on transcript processing, localization and accumulation: lessons from the retinal degeneration 7 mouse and implications for the genomic ecology of L1 elements. Human Molecular Genetics, 2006, 15, 2146-2156.	1.4	74
30	The Rod Photoreceptor-Specific Nuclear Receptor Nr2e3 Represses Transcription of Multiple Cone-Specific Genes. Journal of Neuroscience, 2005, 25, 118-129.	1.7	239