
## Pedro Alexandrino Fernandes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8496982/publications.pdf

Version: 2024-02-01



PEDRO ALEXANDRINO

| #  | Article                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | General Performance of Density Functionals. Journal of Physical Chemistry A, 2007, 111, 10439-10452.                                                                                              | 2.5  | 907       |
| 2  | Protein-ligand docking: Current status and future challenges. Proteins: Structure, Function and Bioinformatics, 2006, 65, 15-26.                                                                  | 2.6  | 761       |
| 3  | Hot spots-A review of the protein-protein interface determinant amino-acid residues. Proteins:<br>Structure, Function and Bioinformatics, 2007, 68, 803-812.                                      | 2.6  | 639       |
| 4  | α-Glucosidase inhibition by flavonoids: an <i>in vitro</i> and <i>in silico</i> structure–activity relationship study. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 1216-1228. | 5.2  | 274       |
| 5  | Theoretical Insights into the Mechanism for Thiol/Disulfide Exchange. Chemistry - A European Journal, 2004, 10, 257-266.                                                                          | 3.3  | 257       |
| 6  | Computational alanine scanning mutagenesis—An improved methodological approach. Journal of<br>Computational Chemistry, 2007, 28, 644-654.                                                         | 3.3  | 230       |
| 7  | Cholesterol Biosynthesis: A Mechanistic Overview. Biochemistry, 2016, 55, 5483-5506.                                                                                                              | 2.5  | 203       |
| 8  | Protein-Ligand Docking in the New Millennium – A Retrospective of 10 Years in the Field. Current<br>Medicinal Chemistry, 2013, 20, 2296-2314.                                                     | 2.4  | 197       |
| 9  | Computational Enzymatic Catalysis. Accounts of Chemical Research, 2008, 41, 689-698.                                                                                                              | 15.6 | 152       |
| 10 | Application of quantum mechanics/molecular mechanics methods in the study of enzymatic reaction mechanisms. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 7, e1281.     | 14.6 | 137       |
| 11 | The Carboxylate Shift in Zinc Enzymes: A Computational Study. Journal of the American Chemical Society, 2007, 129, 1378-1385.                                                                     | 13.7 | 133       |
| 12 | Understanding Ribonucleotide Reductase Inactivation by Gemcitabine. Chemistry - A European Journal,<br>2007, 13, 8507-8515.                                                                       | 3.3  | 125       |
| 13 | Farnesyltransferase Inhibitors: A Detailed Chemical View on an Elusive Biological Problem. Current<br>Medicinal Chemistry, 2008, 15, 1478-1492.                                                   | 2.4  | 107       |
| 14 | Similarities and differences in the thioredoxin superfamily. Progress in Biophysics and Molecular<br>Biology, 2006, 91, 229-248.                                                                  | 2.9  | 106       |
| 15 | Overview of Ribonucleotide Reductase Inhibitors: An Appealing Target in Anti-Tumour Therapy.<br>Current Medicinal Chemistry, 2005, 12, 1283-1294.                                                 | 2.4  | 101       |
| 16 | Protein–protein docking dealing with the unknown. Journal of Computational Chemistry, 2010, 31,<br>317-342.                                                                                       | 3.3  | 100       |
| 17 | Evaluation of a flavonoids library for inhibition of pancreatic α-amylase towards a structure–activity<br>relationship. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 577-588.  | 5.2  | 100       |
| 18 | Receptor-based virtual screening protocol for drug discovery. Archives of Biochemistry and<br>Biophysics, 2015, 582, 56-67.                                                                       | 3.0  | 98        |

| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Mechanism of Formation of the Internal Aldimine in Pyridoxal 5′-Phosphate-Dependent Enzymes. Journal of the American Chemical Society, 2011, 133, 15496-15505.                                                                                                  | 13.7 | 91        |
| 20 | Vascular Endothelial Growth Factor (VEGF) Inhibition - A Critical Review. Anti-Cancer Agents in Medicinal Chemistry, 2007, 7, 223-245.                                                                                                                          | 1.7  | 90        |
| 21 | QM/MM Studies on the β-Galactosidase Catalytic Mechanism: Hydrolysis and Transglycosylation Reactions. Journal of Chemical Theory and Computation, 2010, 6, 421-433.                                                                                            | 5.3  | 88        |
| 22 | Gemcitabine: A Critical Nucleoside for Cancer Therapy. Current Medicinal Chemistry, 2012, 19, 1076-1087.                                                                                                                                                        | 2.4  | 83        |
| 23 | Ribonucleotide Reductase: A Critical Enzyme for Cancer Chemotherapy and Antiviral Agents. Recent<br>Patents on Anti-Cancer Drug Discovery, 2007, 2, 11-29.                                                                                                      | 1.6  | 81        |
| 24 | Molecular Dynamics Simulation of the Water/2-Heptanone Liquid-Liquid Interface. Journal of Physical<br>Chemistry B, 1999, 103, 6290-6299.                                                                                                                       | 2.6  | 74        |
| 25 | Enzymatic Flexibility and Reaction Rate: A QM/MM Study of HIV-1 Protease. ACS Catalysis, 2015, 5, 5617-5626.                                                                                                                                                    | 11.2 | 72        |
| 26 | Analysis of zincâ€ligand bond lengths in metalloproteins: Trends and patterns. Proteins: Structure,<br>Function and Bioinformatics, 2007, 69, 466-475.                                                                                                          | 2.6  | 71        |
| 27 | The Zinc proteome: a tale of stability and functionality. Dalton Transactions, 2009, , 7946.                                                                                                                                                                    | 3.3  | 71        |
| 28 | Virtual Screening in Drug Design and Development. Combinatorial Chemistry and High Throughput Screening, 2010, 13, 442-453.                                                                                                                                     | 1.1  | 71        |
| 29 | Mammalian Cytosolic Glutathione Transferases. Current Protein and Peptide Science, 2008, 9, 325-337.                                                                                                                                                            | 1.4  | 70        |
| 30 | Mechanism for ribonucleotide reductase inactivation by the anticancer drug gemcitabine. Journal of<br>Computational Chemistry, 2004, 25, 1286-1294.                                                                                                             | 3.3  | 69        |
| 31 | Benchmarking of DFT Functionals for the Hydrolysis of Phosphodiester Bonds. Journal of Chemical<br>Theory and Computation, 2010, 6, 2281-2292.                                                                                                                  | 5.3  | 69        |
| 32 | The chemistry of snake venom and its medicinal potential. Nature Reviews Chemistry, 2022, 6, 451-469.                                                                                                                                                           | 30.2 | 68        |
| 33 | Computational Alanine Scanning Mutagenesis: MM-PBSA vs Tl. Journal of Chemical Theory and Computation, 2013, 9, 1311-1319.                                                                                                                                      | 5.3  | 67        |
| 34 | Amino acid deprivation using enzymes as a targeted therapy for cancer and viral infections. Expert<br>Opinion on Therapeutic Patents, 2017, 27, 283-297.                                                                                                        | 5.0  | 63        |
| 35 | Farnesyltransferase—New Insights into the Zinc-Coordination Sphere Paradigm: Evidence for a<br>Carboxylate-Shift Mechanism. Biophysical Journal, 2005, 88, 483-494.                                                                                             | 0.5  | 61        |
| 36 | Unraveling the Importance of Proteinâ^'Protein Interaction:Â Application of a Computational<br>Alanine-Scanning Mutagenesis to the Study of the IgG1 Streptococcal Protein G (C2 Fragment)<br>Complex. Journal of Physical Chemistry B, 2006, 110, 10962-10969. | 2.6  | 60        |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Glutathione Transferase: New Model for Glutathione Activation. Chemistry - A European Journal, 2008, 14, 9591-9598.                                                                                                            | 3.3  | 59        |
| 38 | The Current Status of the NNRTI Family of Antiretrovirals Used Against HIV Infection. Current Medicinal Chemistry, 2008, 15, 1083-1095.                                                                                        | 2.4  | 58        |
| 39 | Studies on α-Glucosidase Inhibitors Development: Magic Molecules for the Treatment of Carbohydrate<br>Mediated Diseases. Mini-Reviews in Medicinal Chemistry, 2012, 12, 713-720.                                               | 2.4  | 58        |
| 40 | Unraveling the Enigmatic Mechanism of <scp>l</scp> -Asparaginase II with QM/QM Calculations.<br>Journal of the American Chemical Society, 2013, 135, 7146-7158.                                                                | 13.7 | 57        |
| 41 | Theoretical Studies on the Mechanism of Inhibition of Ribonucleotide Reductase by<br>(E)-2â€~-Fluoromethylene-2â€~-deoxycitidine-5â€~-diphosphate. Journal of the American Chemical Society, 2003,<br>125, 6311-6322.          | 13.7 | 56        |
| 42 | The Sulfur Shift: An Activation Mechanism for Periplasmic Nitrate Reductase and Formate Dehydrogenase. Inorganic Chemistry, 2013, 52, 10766-10772.                                                                             | 4.0  | 54        |
| 43 | The Catalytic Mechanism of Carboxylesterases: A Computational Study. Biochemistry, 2014, 53, 5820-5829.                                                                                                                        | 2.5  | 53        |
| 44 | Glycosidase inhibitors: a patent review (2008 – 2013). Expert Opinion on Therapeutic Patents, 2014, 24,<br>857-874.                                                                                                            | 5.0  | 52        |
| 45 | Reaction Mechanism of the PET Degrading Enzyme PETase Studied with DFT/MM Molecular Dynamics Simulations. ACS Catalysis, 2021, 11, 11626-11638.                                                                                | 11.2 | 52        |
| 46 | Comparative analysis of the performance of commonly available density functionals in the<br>determination of geometrical parameters for zinc complexes. Journal of Computational Chemistry,<br>2009, 30, 2752-2763.            | 3.3  | 51        |
| 47 | Inhibition of Pancreatic Elastase by Polyphenolic Compounds. Journal of Agricultural and Food<br>Chemistry, 2010, 58, 10668-10676.                                                                                             | 5.2  | 51        |
| 48 | The Catalytic Mechanism of HIV-1 Integrase for DNA 3′-End Processing Established by QM/MM<br>Calculations. Journal of the American Chemical Society, 2012, 134, 13436-13447.                                                   | 13.7 | 51        |
| 49 | Molecular Dynamics Study of the Transfer of Iodide across Two Liquid/Liquid Interfaces. Journal of<br>Physical Chemistry B, 1999, 103, 8930-8939.                                                                              | 2.6  | 50        |
| 50 | Aryl- and Heteroaryl-Thiosemicarbazone Derivatives and Their Metal Complexes: A Pharmacological<br>Template. Recent Patents on Anti-Cancer Drug Discovery, 2013, 8, 168-182.                                                   | 1.6  | 50        |
| 51 | Mechanistic insights on the reduction of glutathione disulfide by protein disulfide isomerase.<br>Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4724-E4733.                     | 7.1  | 49        |
| 52 | Dehydration of Ribonucleotides Catalyzed by Ribonucleotide Reductase: The Role of the Enzyme.<br>Biophysical Journal, 2006, 90, 2109-2119.                                                                                     | 0.5  | 48        |
| 53 | Computational enzymatic catalysis – clarifying enzymatic mechanisms with the help of computers.<br>Physical Chemistry Chemical Physics, 2012, 14, 12431.                                                                       | 2.8  | 48        |
| 54 | New Parameters for Higher Accuracy in the Computation of Binding Free Energy Differences upon<br>Alanine Scanning Mutagenesis on Protein–Protein Interfaces. Journal of Chemical Information and<br>Modeling, 2017, 57, 60-72. | 5.4  | 47        |

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Computational Mechanistic Studies Addressed to the Transimination Reaction Present in All Pyridoxal<br>5′-Phosphate-Requiring Enzymes. Journal of Chemical Theory and Computation, 2011, 7, 1356-1368.                | 5.3  | 46        |
| 56 | Unique Triphenylphosphonium Derivatives for Enhanced Mitochondrial Uptake and Photodynamic<br>Therapy. Bioconjugate Chemistry, 2017, 28, 590-599.                                                                     | 3.6  | 46        |
| 57 | Accuracy of Density Functionals in the Prediction of Electronic Proton Affinities of Amino Acid Side Chains. Journal of Chemical Theory and Computation, 2011, 7, 3898-3908.                                          | 5.3  | 45        |
| 58 | The Catalytic Mechanism of Protein Phosphataseâ€5 Established by DFT Calculations. Chemistry - A<br>European Journal, 2013, 19, 14081-14089.                                                                          | 3.3  | 44        |
| 59 | Inhibition of protein tyrosine phosphatase 1B by flavonoids: A structure - activity relationship study.<br>Food and Chemical Toxicology, 2018, 111, 474-481.                                                          | 3.6  | 44        |
| 60 | Reaction Mechanism and Determinants for Efficient Catalysis by DszB, a Key Enzyme for Crude Oil<br>Bio-desulfurization. ACS Catalysis, 2020, 10, 9545-9554.                                                           | 11.2 | 44        |
| 61 | Farnesyltransferase Inhibitors: A Comprehensive Review Based on Quantitative Structural Analysis.<br>Current Medicinal Chemistry, 2013, 20, 4888-4923.                                                                | 2.4  | 44        |
| 62 | The Catalytic Mechanism of RNA Polymerase II. Journal of Chemical Theory and Computation, 2011, 7, 1177-1188.                                                                                                         | 5.3  | 40        |
| 63 | Unraveling the mechanism of the farnesyltransferase enzyme. Journal of Biological Inorganic<br>Chemistry, 2005, 10, 3-10.                                                                                             | 2.6  | 39        |
| 64 | Theoretical studies on farnesyltransferase: The distances paradox explained. Proteins: Structure,<br>Function and Bioinformatics, 2006, 66, 205-218.                                                                  | 2.6  | 39        |
| 65 | Theoretical studies on farnesyl transferase: Evidence for thioether product coordination to the active-site zinc sphere. Journal of Computational Chemistry, 2007, 28, 1160-1168.                                     | 3.3  | 39        |
| 66 | Understanding the Binding of Procyanidins to Pancreatic Elastase by Experimental and Computational<br>Methods. Biochemistry, 2010, 49, 5097-5108.                                                                     | 2.5  | 39        |
| 67 | The importance of intramolecular hydrogen bonds on the translocation of the small drug piracetam through a lipid bilayer. RSC Advances, 2021, 11, 899-908.                                                            | 3.6  | 39        |
| 68 | Influence of Ion Size and Charge in Ion Transfer Processes Across a Liquid   Liquid Interface. Journal of<br>Physical Chemistry B, 2000, 104, 2278-2286.                                                              | 2.6  | 38        |
| 69 | The Accuracy of Density Functional Theory in the Description of Cationâ~'Ï€ and π–Hydrogen Bond<br>Interactions. Journal of Chemical Theory and Computation, 2011, 7, 2059-2067.                                      | 5.3  | 38        |
| 70 | Comparative analysis of the performance of commonly available density functionals in the<br>determination of geometrical parameters for copper complexes. Journal of Computational Chemistry,<br>2013, 34, 2079-2090. | 3.3  | 38        |
| 71 | Mechanistic studies on the formation of glycosidaseâ€substrate and glycosidaseâ€inhibitor covalent<br>intermediates. Journal of Computational Chemistry, 2008, 29, 2565-2574.                                         | 3.3  | 37        |
| 72 | Benchmarking of density functionals for the kinetics and thermodynamics of the hydrolysis of<br>glycosidic bonds catalyzed by glycosidases. International Journal of Quantum Chemistry, 2017, 117,<br>e25409.         | 2.0  | 37        |

| #  | Article                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Reaction Mechanism of MHETase, a PET Degrading Enzyme. ACS Catalysis, 2021, 11, 10416-10428.                                                                                                 | 11.2 | 36        |
| 74 | Unravelling Hot Spots: a comprehensive computational mutagenesis study. Theoretical Chemistry Accounts, 2006, 117, 99-113.                                                                   | 1.4  | 35        |
| 75 | Mechanism of Thioredoxin-Catalyzed Disulfide Reduction. Activation of the Buried Thiol and Role of the Variable Active-Site Residues. Journal of Physical Chemistry B, 2008, 112, 2511-2523. | 2.6  | 35        |
| 76 | Estrogen receptor-positive (ER+) breast cancer treatment: Are multi-target compounds the next promising approach?. Biochemical Pharmacology, 2020, 177, 113989.                              | 4.4  | 35        |
| 77 | Determination of the ΔpKa between the active site cysteines of thioredoxin and DsbA. Journal of<br>Computational Chemistry, 2006, 27, 966-975.                                               | 3.3  | 34        |
| 78 | Understanding the importance of the aromatic amino-acid residues as hot-spots. Biochimica Et<br>Biophysica Acta - Proteins and Proteomics, 2013, 1834, 404-414.                              | 2.3  | 34        |
| 79 | QM/MM Study of the Reaction Mechanism of the Dehydratase Domain from Mammalian Fatty Acid<br>Synthase. ACS Catalysis, 2018, 8, 10267-10278.                                                  | 11.2 | 34        |
| 80 | Parameters for Molecular Dynamics Simulations of Manganese-Containing Metalloproteins. Journal of Chemical Theory and Computation, 2013, 9, 2718-2732.                                       | 5.3  | 33        |
| 81 | Benchmarking of Density Functionals for the Accurate Description of Thiol–Disulfide Exchange.<br>Journal of Chemical Theory and Computation, 2014, 10, 4842-4856.                            | 5.3  | 33        |
| 82 | Understanding Conformational Dynamics of Complex Lipid Mixtures Relevant to Biology. Journal of Membrane Biology, 2018, 251, 609-631.                                                        | 2.1  | 33        |
| 83 | Ribonucleotide activation by enzyme ribonucleotide reductase: Understanding the role of the enzyme.<br>Journal of Computational Chemistry, 2004, 25, 2031-2037.                              | 3.3  | 32        |
| 84 | Comparative Assessment of Theoretical Methods for the Determination of Geometrical Properties in<br>Biological Zinc Complexes. Journal of Physical Chemistry B, 2007, 111, 9146-9152.        | 2.6  | 32        |
| 85 | The Search for the Mechanism of the Reaction Catalyzed by Farnesyltransferase. Chemistry - A<br>European Journal, 2009, 15, 4243-4247.                                                       | 3.3  | 32        |
| 86 | Reaction Mechanism of Human Renin Studied by Quantum Mechanics/Molecular Mechanics (QM/MM)<br>Calculations. ACS Catalysis, 2014, 4, 3869-3876.                                               | 11.2 | 32        |
| 87 | Establishing the Catalytic Mechanism of Human Pancreatic α-Amylase with QM/MM Methods. Journal of Chemical Theory and Computation, 2015, 11, 2508-2516.                                      | 5.3  | 32        |
| 88 | Animal Fatty Acid Synthase: A Chemical Nanofactory. Chemical Reviews, 2021, 121, 9502-9553.                                                                                                  | 47.7 | 32        |
| 89 | Hot Spot Occlusion from Bulk Water:Â a Comprehensive Study of the Complex between the Lysozyme<br>HEL and the Antibody FVD1.3. Journal of Physical Chemistry B, 2007, 111, 2697-2706.        | 2.6  | 31        |
| 90 | MADAMM: A multistaged docking with an automated molecular modeling protocol. Proteins:<br>Structure, Function and Bioinformatics, 2009, 74, 192-206.                                         | 2.6  | 31        |

| #   | Article                                                                                                                                                                                                                           | IF                        | CITATIONS          |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------|
| 91  | Prediction of Solvation Free Energies with Thermodynamic Integration Using the General Amber Force<br>Field. Journal of Chemical Theory and Computation, 2014, 10, 3570-3577.                                                     | 5.3                       | 31                 |
| 92  | Relationship between Enzyme/Substrate Properties and Enzyme Efficiency in Hydrolases. ACS Catalysis, 2015, 5, 5877-5887.                                                                                                          | 11.2                      | 31                 |
| 93  | A novel synthetic peptide inspired on Lys49 phospholipase A 2 from Crotalus oreganus abyssus snake<br>venom active against multidrug-resistant clinical isolates. European Journal of Medicinal Chemistry,<br>2018, 149, 248-256. | 5.5                       | 31                 |
| 94  | Aryl- and Heteroaryl-Thiosemicarbazone Derivatives and Their Metal Complexes: A Pharmacological<br>Template. Recent Patents on Anti-Cancer Drug Discovery, 2013, 8, 168-182.                                                      | 1.6                       | 30                 |
| 95  | Accuracy of the numerical solution of the Poisson–Boltzmann equation. Computational and<br>Theoretical Chemistry, 2005, 729, 11-18.                                                                                               | 1.5                       | 29                 |
| 96  | Molecular determinants of ligand specificity in family 11 carbohydrate binding modules – an NMR, Xâ€ray<br>crystallography and computational chemistry approach. FEBS Journal, 2008, 275, 2524-2535.                              | 4.7                       | 29                 |
| 97  | Multidimensional epistasis and fitness landscapes in enzyme evolution. Biochemical Journal, 2012, 445, 39-46.                                                                                                                     | 3.7                       | 29                 |
| 98  | QSAR analysis of 2-benzoxazolyl hydrazone derivatives for anticancer activity and its possible target prediction. Medicinal Chemistry Research, 2012, 21, 133-144.                                                                | 2.4                       | 29                 |
| 99  | Mechanism of Glutathione Transferase P1-1-Catalyzed Activation of the Prodrug Canfosfamide (TLK286,) Tj ETQq                                                                                                                      | 1 <u>1 0</u> .784:<br>2.5 | 314 rgBT /0\<br>29 |
| 100 | Molecular Dynamics Simulations of the Enzyme Cu, Zn Superoxide Dismutase. Journal of Physical Chemistry B, 2006, 110, 16754-16762.                                                                                                | 2.6                       | 28                 |
| 101 | Molecular dynamics simulations on the critical states of the farnesyltransferase enzyme. Bioorganic and Medicinal Chemistry, 2009, 17, 3369-3378.                                                                                 | 3.0                       | 28                 |
| 102 | Chemical Behavior of Methylpyranomalvidin-3- <i>O</i> -glucoside in Aqueous Solution Studied by NMR and UVâ^'Visible Spectroscopy. Journal of Physical Chemistry B, 2011, 115, 1538-1545.                                         | 2.6                       | 28                 |
| 103 | Structural analysis of α-glucosidase inhibitors by validated QSAR models using topological and hydrophobicity based descriptors. Chemometrics and Intelligent Laboratory Systems, 2011, 109, 101-112.                             | 3.5                       | 28                 |
| 104 | vsLab—An implementation for virtual highâ€ŧhroughput screening using AutoDock and VMD.<br>International Journal of Quantum Chemistry, 2011, 111, 1208-1212.                                                                       | 2.0                       | 28                 |
| 105 | Insight into Enzymatic Nitrile Reduction: QM/MM Study of the Catalytic Mechanism of QueF Nitrile Reductase. ACS Catalysis, 2015, 5, 3740-3751.                                                                                    | 11.2                      | 28                 |
| 106 | Periplasmic Nitrate Reductase and Formate Dehydrogenase: Similar Molecular Architectures with Very<br>Different Enzymatic Activities. Accounts of Chemical Research, 2015, 48, 2875-2884.                                         | 15.6                      | 28                 |
| 107 | Influence of Frozen Residues on the Exploration of the PES of Enzyme Reaction Mechanisms. Journal of Chemical Theory and Computation, 2017, 13, 5486-5495.                                                                        | 5.3                       | 28                 |
| 108 | Farnesyltransferase: Theoretical studies on peptide substrate entrance—thiol or thiolate coordination?. Computational and Theoretical Chemistry, 2005, 729, 125-129.                                                              | 1.5                       | 27                 |

| #   | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Theoretical Study of the Unusual Protonation Properties of the Active Site Cysteines in Thioredoxin.<br>Journal of Physical Chemistry B, 2006, 110, 5758-5761.                                                                                                  | 2.6  | 27        |
| 110 | Effective tailor-made force field parameterization of the several Zn coordination environments in the puzzling FTase enzyme: opening the door to the full understanding of its elusive catalytic mechanism. Theoretical Chemistry Accounts, 2006, 117, 171-181. | 1.4  | 26        |
| 111 | Comparative evolutionary genomics of the HADH2 gene encoding Aβ-binding alcohol<br>dehydrogenase/17β-hydroxysteroid dehydrogenase type 10 (ABAD/HSD10). BMC Genomics, 2006, 7, 202.                                                                             | 2.8  | 26        |
| 112 | Volarea – A Bioinformatics Tool to Calculate the Surface Area and the Volume of Molecular Systems.<br>Chemical Biology and Drug Design, 2013, 82, 743-755.                                                                                                      | 3.2  | 26        |
| 113 | Development of Ribonucleotide Reductase Inhibitors: A Review on Structure Activity Relationships.<br>Mini-Reviews in Medicinal Chemistry, 2013, 13, 1862-1872.                                                                                                  | 2.4  | 26        |
| 114 | Theoretical Studies on the Mode of Inhibition of Ribonucleotide Reductase by 2′-Substituted Substrate<br>Analogues. Chemistry - A European Journal, 2003, 9, 5916-5925.                                                                                         | 3.3  | 25        |
| 115 | PLP undergoes conformational changes during the course of an enzymatic reaction. Acta<br>Crystallographica Section D: Biological Crystallography, 2014, 70, 596-606.                                                                                            | 2.5  | 25        |
| 116 | Synthesis and Hydrolytic Studies on the Air-Stable<br>[(4-CN-PhO)(E)P(μ-N <sup><i>t</i></sup> Bu)] <sub>2</sub> (E = O, S, and Se) Cyclodiphosphazanes.<br>Inorganic Chemistry, 2015, 54, 6423-6432.                                                            | 4.0  | 25        |
| 117 | The reduction of ribonucleotides catalyzed by the enzyme ribonucleotide reductase. Theoretical Chemistry Accounts, 2002, 108, 352-364.                                                                                                                          | 1.4  | 24        |
| 118 | New insights in the catalytic mechanism of tyrosine ammonia-lyase given by QM/MM and QM cluster models. Archives of Biochemistry and Biophysics, 2015, 582, 107-115.                                                                                            | 3.0  | 24        |
| 119 | Improving the Biodesulfurization of Crude Oil and Derivatives: A QM/MM Investigation of the<br>Catalytic Mechanism of NADH-FMN Oxidoreductase (DszD). Journal of Physical Chemistry A, 2016, 120,<br>5300-5306.                                                 | 2.5  | 24        |
| 120 | Understanding the Catalytic Machinery and the Reaction Pathway of the Malonyl-Acetyl Transferase<br>Domain of Human Fatty Acid Synthase. ACS Catalysis, 2018, 8, 4860-4872.                                                                                     | 11.2 | 24        |
| 121 | Mechanistic Pathway on Human α-Glucosidase Maltase-Glucoamylase Unveiled by QM/MM Calculations.<br>Journal of Physical Chemistry B, 2018, 122, 3889-3899.                                                                                                       | 2.6  | 24        |
| 122 | QM/MM Study and MD Simulations on the Hypertension Regulator Angiotensin-Converting Enzyme.<br>ACS Catalysis, 2014, 4, 2587-2597.                                                                                                                               | 11.2 | 23        |
| 123 | Unveiling the Catalytic Mechanism of NADP <sup>+</sup> -Dependent Isocitrate Dehydrogenase with QM/MM Calculations. ACS Catalysis, 2016, 6, 357-368.                                                                                                            | 11.2 | 23        |
| 124 | Theoretical study of ribonucleotide reductase mechanism-based inhibition by<br>2?-azido-2?-deoxyribonucleoside 5?-diphosphates. Journal of Computational Chemistry, 2004, 25, 227-237.                                                                          | 3.3  | 22        |
| 125 | DFT studies on the β-glycosidase catalytic mechanism: The deglycosylation step. Computational and Theoretical Chemistry, 2010, 946, 125-133.                                                                                                                    | 1.5  | 22        |
| 126 | Structural and mechanistic aspects of S-S bonds in the thioredoxin-like family of proteins. Biological Chemistry, 2019, 400, 575-587.                                                                                                                           | 2.5  | 22        |

| #   | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Activation Free Energy, Substrate Binding Free Energy, and Enzyme Efficiency Fall in a Very Narrow<br>Range of Values for Most Enzymes. ACS Catalysis, 2020, 10, 8444-8453.                                                       | 11.2 | 22        |
| 128 | Hot spot computational identification: Application to the complex formed between the hen egg white<br>lysozyme (HEL) and the antibody HyHEL-10. International Journal of Quantum Chemistry, 2007, 107,<br>299-310.                | 2.0  | 21        |
| 129 | Protein–protein recognition: a computational mutagenesis study of the MDM2–P53 complex.<br>Theoretical Chemistry Accounts, 2008, 120, 533-542.                                                                                    | 1.4  | 21        |
| 130 | The catalytic mechanism of mouse renin studied with QM/MM calculations. Physical Chemistry Chemical Physics, 2012, 14, 12605.                                                                                                     | 2.8  | 21        |
| 131 | Human Ether-a-Go-Go-Related Gene Channel Blockers and its Structural Analysis for Drug Design.<br>Current Drug Targets, 2013, 14, 102-113.                                                                                        | 2.1  | 21        |
| 132 | QM/MM study of the mechanism of reduction of 3-hydroxy-3-methylglutaryl coenzyme A catalyzed by human HMG-CoA reductase. Catalysis Science and Technology, 2016, 6, 7172-7185.                                                    | 4.1  | 21        |
| 133 | Molecular motion regulates the activity of the Mitochondrial Serine Protease HtrA2. Cell Death and Disease, 2017, 8, e3119-e3119.                                                                                                 | 6.3  | 21        |
| 134 | A Buried Water Molecule Influences Reactivity in α-Amylase on a Subnanosecond Time Scale. ACS<br>Catalysis, 2018, 8, 4055-4063.                                                                                                   | 11.2 | 21        |
| 135 | Cannabidiol (CBD) but not tetrahydrocannabinol (THC) dysregulate in vitro decidualization of human endometrial stromal cells by disruption of estrogen signaling. Reproductive Toxicology, 2020, 93, 75-82.                       | 2.9  | 21        |
| 136 | Carbohydrateâ€binding modules from family 11: Understanding the binding mode of polysaccharides.<br>International Journal of Quantum Chemistry, 2008, 108, 2030-2040.                                                             | 2.0  | 20        |
| 137 | Ribonucleotide Reductase: A Mechanistic Portrait of Substrate Analogues Inhibitors. Current<br>Medicinal Chemistry, 2010, 17, 2854-2872.                                                                                          | 2.4  | 20        |
| 138 | Analysis of van der Waals surface area properties for human ether-a-go-go-related gene blocking<br>activity: computational study on structurally diverse compounds. SAR and QSAR in Environmental<br>Research, 2012, 23, 521-536. | 2.2  | 20        |
| 139 | Diffusion of the small, very polar, drug piracetam through a lipid bilayer: an MD simulation study.<br>Theoretical Chemistry Accounts, 2017, 136, 1.                                                                              | 1.4  | 20        |
| 140 | Conformational diversity induces nanosecond-timescale chemical disorder in the HIV-1 protease reaction pathway. Chemical Science, 2019, 10, 7212-7221.                                                                            | 7.4  | 20        |
| 141 | Catalytic Mechanism of Human Aldehyde Oxidase. ACS Catalysis, 2020, 10, 9276-9286.                                                                                                                                                | 11.2 | 20        |
| 142 | Molecular Simulation of the Interface between Two Immiscible Electrolyte Solutions. Journal of Physical Chemistry B, 2001, 105, 981-993.                                                                                          | 2.6  | 19        |
| 143 | Detailed microscopic study of the full zipA:FtsZ interface. Proteins: Structure, Function and Bioinformatics, 2006, 63, 811-821.                                                                                                  | 2.6  | 19        |
| 144 | Enzyme Flexibility and the Catalytic Mechanism of Farnesyltransferase: Targeting the Relation. Journal of Physical Chemistry B, 2008, 112, 8681-8691.                                                                             | 2.6  | 19        |

| #   | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Substrate Recognition in HIV-1 Protease: A Computational Study. Journal of Physical Chemistry B, 2010, 114, 2525-2532.                                                                                                | 2.6  | 19        |
| 146 | Glutathione Transferase A1-1: Catalytic Importance of Arginine 15. Journal of Physical Chemistry B, 2010, 114, 1690-1697.                                                                                             | 2.6  | 19        |
| 147 | Structural feature study of benzofuran derivatives as farnesyltransferase inhibitors. Journal of<br>Enzyme Inhibition and Medicinal Chemistry, 2011, 26, 777-791.                                                     | 5.2  | 19        |
| 148 | Insights into the structural determinants of substrate specificity and activity in mouse aldehyde oxidases. Journal of Biological Inorganic Chemistry, 2015, 20, 209-217.                                             | 2.6  | 19        |
| 149 | HMG-CoA Reductase inhibitors: an updated review of patents of novel compounds and formulations (2011-2015). Expert Opinion on Therapeutic Patents, 2016, 26, 1257-1272.                                               | 5.0  | 19        |
| 150 | Reaction Mechanism of <i>Mycobacterium Tuberculosis</i> Glutamine Synthetase Using Quantum<br>Mechanics/Molecular Mechanics Calculations. Chemistry - A European Journal, 2016, 22, 9218-9225.                        | 3.3  | 19        |
| 151 | Improving the Catalytic Power of the DszD Enzyme for the Biodesulfurization of Crude Oil and Derivatives. Chemistry - A European Journal, 2017, 23, 17231-17241.                                                      | 3.3  | 19        |
| 152 | The dipeptidyl peptidase-4 inhibitory effect of flavonoids is hindered in protein rich environments.<br>Food and Function, 2019, 10, 5718-5731.                                                                       | 4.6  | 19        |
| 153 | A theoretical study of radical-only and combined radical/carbocationic mechanisms of arachidonic<br>acid cyclooxygenation by prostaglandin H synthase. Theoretical Chemistry Accounts, 2003, 110, 345-351.            | 1.4  | 18        |
| 154 | Theoretical Study on the Inhibition of Ribonucleotide Reductase by<br>2â€~-Mercapto-2â€~-deoxyribonucleoside-5â€~-diphosphates. Journal of the American Chemical Society, 2005,<br>127, 5174-5179.                    | 13.7 | 18        |
| 155 | Computational studies on class I ribonucleotide reductase: understanding the mechanisms of action and inhibition of a cornerstone enzyme for the treatment of cancer. European Biophysics Journal, 2006, 35, 125-135. | 2.2  | 18        |
| 156 | Gas-Phase Geometry Optimization of Biological Molecules as a Reasonable Alternative to a Continuum<br>Environment Description: Fact, Myth, or Fiction?. Journal of Physical Chemistry A, 2009, 113, 14231-14236.      | 2.5  | 18        |
| 157 | hERG binding feature analysis of structurally diverse compounds by QSAR and fragmental analysis.<br>RSC Advances, 2011, 1, 1126.                                                                                      | 3.6  | 18        |
| 158 | Detailed Atomistic Analysis of the HIV-1 Protease Interface. Journal of Physical Chemistry B, 2011, 115, 7045-7057.                                                                                                   | 2.6  | 18        |
| 159 | Protocol for Computational Enzymatic Reactivity Based on Geometry Optimisation. ChemPhysChem, 2018, 19, 669-689.                                                                                                      | 2.1  | 18        |
| 160 | The glycation site specificity of human serum transferrin is a determinant for transferrin's<br>functional impairment under elevated glycaemic conditions. Biochemical Journal, 2014, 461, 33-42.                     | 3.7  | 17        |
| 161 | The mechanism of the Ser-(cis)Ser-Lys catalytic triad of peptide amidases. Physical Chemistry Chemical Physics, 2017, 19, 12343-12354.                                                                                | 2.8  | 17        |
| 162 | A QM/MM study of the reaction mechanism of human β-ketoacyl reductase. Physical Chemistry Chemical Physics, 2017, 19, 347-355.                                                                                        | 2.8  | 17        |

| #   | Article                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Modeling of Human Fatty Acid Synthase and <i>in Silico</i> Docking of Acyl Carrier Protein Domain and Its Partner Catalytic Domains. Journal of Physical Chemistry B, 2018, 122, 77-85.               | 2.6  | 17        |
| 164 | Mechanistic Studies of a Flavin Monooxygenase: Sulfur Oxidation of Dibenzothiophenes by DszC. ACS<br>Catalysis, 2018, 8, 9298-9311.                                                                   | 11.2 | 17        |
| 165 | Exploring the Identity of the General Base for a DNA Polymerase Catalyzed Reaction Using QM/MM: The<br>Case Study of Human Translesion Synthesis Polymerase Î. ACS Catalysis, 2019, 9, 2543-2551.     | 11.2 | 17        |
| 166 | How the Destabilization of a Reaction Intermediate Affects Enzymatic Efficiency: The Case of Human<br>Transketolase. ACS Catalysis, 2020, 10, 2872-2881.                                              | 11.2 | 17        |
| 167 | Pyruvate Formate Lyase:Â A New Perspective. Journal of Physical Chemistry B, 2003, 107, 5751-5757.                                                                                                    | 2.6  | 16        |
| 168 | New insights into a critical biological control step of the mechanism of Ribonucleotide reductase.<br>Computational and Theoretical Chemistry, 2004, 709, 53-65.                                      | 1.5  | 16        |
| 169 | Enzyme Ribonucleotide Reductase:Â Unraveling an Enigmatic Paradigm of Enzyme Inhibition by Furanone<br>Derivatives. Journal of Physical Chemistry B, 2006, 110, 21272-21281.                          | 2.6  | 16        |
| 170 | Docking and molecular dynamics studies on the stereoselectivity in the enzymatic synthesis of carbohydrates. Theoretical Chemistry Accounts, 2009, 122, 283-296.                                      | 1.4  | 16        |
| 171 | Glutathione Transferase Classes Alpha, Pi, and Mu: GSH Activation Mechanism. Journal of Physical<br>Chemistry B, 2010, 114, 12972-12980.                                                              | 2.6  | 16        |
| 172 | In Silico–Based Structural Analysis of Arylthiophene Derivatives for FTase Inhibitory Activity, hERG, and Other Toxic Effects. Journal of Biomolecular Screening, 2011, 16, 1037-1046.                | 2.6  | 16        |
| 173 | The Catalytic Mechanism of the Marineâ€Đerived Macrocyclase PatGmac. Chemistry - A European Journal,<br>2016, 22, 13089-13097.                                                                        | 3.3  | 16        |
| 174 | Assessing the validity of <scp>DLPNO CSD</scp> (T) in the calculation of activation and reaction energies of ubiquitous enzymatic reactions. Journal of Computational Chemistry, 2020, 41, 2459-2468. | 3.3  | 16        |
| 175 | Discovery of a multi-target compound for estrogen receptor-positive (ER+) breast cancer: Involvement of aromatase and ERs. Biochimie, 2021, 181, 65-76.                                               | 2.6  | 16        |
| 176 | Fused Aryl-Phenazines: Scaffold for the Development of Bioactive Molecules. Current Drug Targets, 2014, 15, 681-688.                                                                                  | 2.1  | 16        |
| 177 | QM/MM Study of the Catalytic Mechanism of GalNAc Removal from GM2 Ganglioside Catalyzed by<br>Human β-HexosaminidaseA. Journal of Physical Chemistry B, 2011, 115, 14751-14759.                       | 2.6  | 15        |
| 178 | QSAR Analysis of Isosteviol Derivatives as α-Glucosidase Inhibitors with Element Count and<br>Other Descriptors. Letters in Drug Design and Discovery, 2011, 8, 14-25.                                | 0.7  | 15        |
| 179 | Ligand based analysis on HMG-CoA reductase inhibitors. Chemometrics and Intelligent Laboratory<br>Systems, 2015, 140, 102-116.                                                                        | 3.5  | 15        |
| 180 | Topological, hydrophobicity, and other descriptors on α-glucosidase inhibition: a QSAR study on xanthone derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 2011, 26, 755-766.        | 5.2  | 14        |

| #   | Article                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Insights into the structural determinants for selective inhibition of nitric oxide synthase isoforms.<br>Journal of Molecular Modeling, 2013, 19, 1537-1551.                                                                                                                   | 1.8 | 14        |
| 182 | Isomerization of Δ <sup>5</sup> -Androstene-3,17-dione into Δ <sup>4</sup> -Androstene-3,17-dione<br>Catalyzed by Human Glutathione Transferase A3-3: A Computational Study Identifies a Dual Role for<br>Glutathione. Journal of Physical Chemistry A, 2014, 118, 5790-5800.  | 2.5 | 14        |
| 183 | A new scoring function for protein–protein docking that identifies native structures with unprecedented accuracy. Physical Chemistry Chemical Physics, 2015, 17, 2378-2387.                                                                                                    | 2.8 | 14        |
| 184 | The binding of free and copper-complexed fluoroquinolones to OmpF porins: an experimental and molecular docking study. RSC Advances, 2017, 7, 10009-10019.                                                                                                                     | 3.6 | 14        |
| 185 | A QM/MM approach on the structural and stereoelectronic factors governing glycosylation by GTF-SI from <i>Streptococcus mutans</i> . Organic and Biomolecular Chemistry, 2018, 16, 2438-2447.                                                                                  | 2.8 | 14        |
| 186 | Benchmark of Density Functionals for the Calculation of the Redox Potential of Fe3+/Fe2+ Within Protein Coordination Shells. Frontiers in Chemistry, 2019, 7, 391.                                                                                                             | 3.6 | 14        |
| 187 | Enabling Mitochondrial Uptake of Lipophilic Dications Using Methylated Triphenylphosphonium<br>Moieties. Inorganic Chemistry, 2019, 58, 8293-8299.                                                                                                                             | 4.0 | 14        |
| 188 | Structural Specificity of Flavonoids in the Inhibition of Human Fructose 1,6-Bisphosphatase. Journal of Natural Products, 2020, 83, 1541-1552.                                                                                                                                 | 3.0 | 14        |
| 189 | Evolution of Acridines and Xanthenes as a Core Structure for the Development of Antileishmanial Agents. Pharmaceuticals, 2022, 15, 148.                                                                                                                                        | 3.8 | 14        |
| 190 | Molecular dynamics simulation of the water/1,2-dichloroethane interface. Computational and Theoretical Chemistry, 1999, 463, 151-156.                                                                                                                                          | 1.5 | 13        |
| 191 | ABAD: A Potential Therapeutic Target for Aβ-Induced Mitochondrial Dysfunction in Alzheimers<br>Disease. Mini-Reviews in Medicinal Chemistry, 2009, 9, 1002-1008.                                                                                                               | 2.4 | 13        |
| 192 | Prediction of the relationship between the structural features of andrographolide derivatives and<br>α-glucosidase inhibitory activity: A quantitative structure-activity relationship (QSAR) Study. Journal<br>of Enzyme Inhibition and Medicinal Chemistry, 2011, 26, 78-87. | 5.2 | 13        |
| 193 | Theoretical insights into the catalytic mechanism of $\hat{I}^2$ -hexosaminidase. Theoretical Chemistry Accounts, 2011, 129, 119-129.                                                                                                                                          | 1.4 | 13        |
| 194 | CompASM: an Amber-VMD alanine scanning mutagenesis plug-in. Theoretical Chemistry Accounts, 2012, 131, 1.                                                                                                                                                                      | 1.4 | 13        |
| 195 | Comparative Structural Analysis of αâ€Clucosidase Inhibitors on Difference Species: A Computational<br>Study. Archiv Der Pharmazie, 2012, 345, 265-274.                                                                                                                        | 4.1 | 13        |
| 196 | Theoretical studies on the binding of rhenium(I) complexes to inducible nitric oxide synthase. Journal of Molecular Graphics and Modelling, 2013, 45, 13-25.                                                                                                                   | 2.4 | 13        |
| 197 | Revisiting Partition in Hydrated Bilayer Systems. Journal of Chemical Theory and Computation, 2017, 13, 2290-2299.                                                                                                                                                             | 5.3 | 13        |
| 198 | Anandamide targets aromatase: A breakthrough on human decidualization. Biochimica Et Biophysica<br>Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 158512.                                                                                                            | 2.4 | 13        |

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Virtual Screening of Compound Libraries. Methods in Molecular Biology, 2010, 572, 57-70.                                                                                                                            | 0.9 | 13        |
| 200 | Pharmacological re-assessment of traditional medicinal plants-derived inhibitors as antidotes against snakebite envenoming: A critical review. Journal of Ethnopharmacology, 2022, 292, 115208.                     | 4.1 | 13        |
| 201 | New designs for MRI contrast agents. Journal of Computer-Aided Molecular Design, 2003, 17, 463-473.                                                                                                                 | 2.9 | 12        |
| 202 | Cu, Zn Superoxide dismutase: distorted active site binds substrate without significant energetic cost.<br>Theoretical Chemistry Accounts, 2006, 115, 27-31.                                                         | 1.4 | 12        |
| 203 | Backbone Importance for Proteinâ^'Protein Binding. Journal of Chemical Theory and Computation, 2007, 3, 885-893.                                                                                                    | 5.3 | 12        |
| 204 | Molecular Dynamics Simulations: Difficulties, Solutions and Strategies for Treating Metalloenzymes.<br>Challenges and Advances in Computational Chemistry and Physics, 2010, , 299-330.                             | 0.6 | 12        |
| 205 | Classification study of solvation free energies of organic molecules using machine learning techniques. RSC Advances, 2014, 4, 61624-61630.                                                                         | 3.6 | 12        |
| 206 | Molecular dynamics studies on both bound and unbound renin protease. Journal of Biomolecular<br>Structure and Dynamics, 2014, 32, 351-363.                                                                          | 3.5 | 12        |
| 207 | Enzymatic "tricks― Carboxylate shift and sulfur shift. International Journal of Quantum Chemistry,<br>2014, 114, 1253-1256.                                                                                         | 2.0 | 12        |
| 208 | Glutamine Synthetase Drugability beyond Its Active Site: Exploring Oligomerization Interfaces and Pockets. Molecules, 2016, 21, 1028.                                                                               | 3.8 | 12        |
| 209 | The Catalytic Mechanism of Human Transketolase. ChemPhysChem, 2019, 20, 2881-2886.                                                                                                                                  | 2.1 | 12        |
| 210 | Lessons from a Single Amino Acid Substitution: Anticancer and Antibacterial Properties of Two<br>Phospholipase A2-Derived Peptides. Current Issues in Molecular Biology, 2022, 44, 46-62.                           | 2.4 | 12        |
| 211 | Density-functional calculations of the Cu, Zn superoxide dismutase redox potential: The influence of active site distortion. Computational and Theoretical Chemistry, 2005, 729, 141-146.                           | 1.5 | 11        |
| 212 | Drug design: New inhibitors for HIV-1 protease based on Nelfinavir as lead. Journal of Molecular<br>Graphics and Modelling, 2007, 26, 634-642.                                                                      | 2.4 | 11        |
| 213 | Role of the variable active site residues in the function of thioredoxin family oxidoreductases.<br>Journal of Computational Chemistry, 2009, 30, 710-724.                                                          | 3.3 | 11        |
| 214 | Molecular dynamics analysis of a series of 22 potential farnesyltransferase substrates containing a<br>CaaX-motif. Journal of Molecular Modeling, 2013, 19, 673-688.                                                | 1.8 | 11        |
| 215 | Relevant Interactions of Antimicrobial Iron Chelators and Membrane Models Revealed by Nuclear<br>Magnetic Resonance and Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2014, 118,<br>14590-14601. | 2.6 | 11        |
| 216 | Discovery of new druggable sites in the anti-cholesterol target HMG-CoA reductase by computational alanine scanning mutagenesis. Journal of Molecular Modeling, 2014, 20, 2178.                                     | 1.8 | 11        |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Protein Ligand DockingDocking in Drug DiscoveryDrug Discovery. , 2014, , 249-286.                                                                                                                     |     | 11        |
| 218 | Are hot-spots occluded from water?. Journal of Biomolecular Structure and Dynamics, 2014, 32, 186-197.                                                                                                | 3.5 | 11        |
| 219 | Insights into the reaction mechanism of 3-O-sulfotransferase through QM/MM calculations. Physical Chemistry Chemical Physics, 2016, 18, 11488-11496.                                                  | 2.8 | 11        |
| 220 | Mechanistic Insights on Human Phosphoglucomutase Revealed by Transition Path Sampling and<br>Molecular Dynamics Calculations. Chemistry - A European Journal, 2018, 24, 1978-1987.                    | 3.3 | 11        |
| 221 | Analysis of the α-Glucosidase Inhibitory Activity of Chromenone Derivatives Based on their<br>Molecular Features: A Computational Study. Medicinal Chemistry, 2011, 7, 526-533.                       | 1.5 | 11        |
| 222 | Molecular dynamics analysis of farnesyltransferase: A closer look into the amino acid behavior.<br>International Journal of Quantum Chemistry, 2008, 108, 1939-1950.                                  | 2.0 | 10        |
| 223 | Molecular dynamics simulations of the amyloid-beta binding alcohol dehydrogenase (ABAD) enzyme.<br>Bioorganic and Medicinal Chemistry, 2008, 16, 9511-9518.                                           | 3.0 | 10        |
| 224 | QSAR and pharmacophore analysis of thiosemicarbazone derivatives as ribonucleotide reductase inhibitors. Medicinal Chemistry Research, 2012, 21, 739-746.                                             | 2.4 | 10        |
| 225 | Biomembrane simulations of 12 lipid types using the general amber force field in a tensionless ensemble. Journal of Biomolecular Structure and Dynamics, 2014, 32, 88-103.                            | 3.5 | 10        |
| 226 | Predictive QSAR models development and validation for human ether-a-go-go related gene (hERG)<br>blockers using newer tools. Journal of Enzyme Inhibition and Medicinal Chemistry, 2014, 29, 317-324. | 5.2 | 10        |
| 227 | Human Fatty Acid Synthase: A Computational Study of the Transfer of the Acyl Moieties from MAT to the ACP Domain. ChemCatChem, 2019, 11, 3853-3864.                                                   | 3.7 | 10        |
| 228 | Advances in the Therapeutic Application of Small-Molecule Inhibitors and Repurposed Drugs against<br>Snakebite. Journal of Medicinal Chemistry, 2021, 64, 13938-13979.                                | 6.4 | 10        |
| 229 | Path integral Monte Carlo simulations: Study of the efficiency of energy estimators. Journal of Chemical Physics, 1995, 103, 5720-5724.                                                               | 3.0 | 9         |
| 230 | Molecular Dynamics Simulation of Liquid 2-Heptanone, Pure and Saturated with Water. Journal of<br>Physical Chemistry B, 1999, 103, 1176-1184.                                                         | 2.6 | 9         |
| 231 | Glutathione transferase A1-1: catalytic role of water. Theoretical Chemistry Accounts, 2009, 124, 71-83.                                                                                              | 1.4 | 9         |
| 232 | Modelling β-1,3-exoglucanase–saccharide interactions: Structure of the enzyme–substrate complex and enzyme binding to the cell wall. Journal of Molecular Graphics and Modelling, 2009, 27, 908-920.  | 2.4 | 9         |
| 233 | Structural Analysis of 2-Piperidin-4-yl-Actamide Derivatives for hERG Blocking and MCH R1<br>Antagonistic Activities. Current Drug Discovery Technologies, 2012, 9, 25-38.                            | 1.2 | 9         |
| 234 | Clarifying the Catalytic Mechanism of Human Glutamine Synthetase: A QM/MM Study. Journal of Physical Chemistry B, 2017, 121, 6313-6320.                                                               | 2.6 | 9         |

| #   | ARTICLE                                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Complexities of the Reaction Mechanisms of CC Double Bond Reduction in Mammalian Fatty Acid<br>Synthase Studied with Quantum Mechanics/Molecular Mechanics Calculations. ACS Catalysis, 2019, 9,<br>11404-11412.                                                                             | 11.2 | 9         |
| 236 | Passive Diffusion of Ciprofloxacin and its Metalloantibiotic: A Computational and Experimental study.<br>Journal of Molecular Biology, 2021, 433, 166911.                                                                                                                                    | 4.2  | 9         |
| 237 | Inhibitory activity of flavonoids against human sucrase-isomaltase (α-glucosidase) activity in a<br>Caco-2/TC7 cellular model. Food and Function, 2022, 13, 1108-1118.                                                                                                                       | 4.6  | 9         |
| 238 | Modeling Chemical and Biological Systems: A Successful Course for Undergraduate Students. Journal of Chemical Education, 2004, 81, 72.                                                                                                                                                       | 2.3  | 8         |
| 239 | Understanding the Mechanism for Ribonucleotide Reductase Inactivation by 2′-<br>Deoxy-2′-methylenecytidine-5′-diphosphate. Journal of Chemical Theory and Computation, 2010, 6,<br>2770-2781.                                                                                                | 5.3  | 8         |
| 240 | Re(I) and Tc(I) Complexes for Targeting Nitric Oxide Synthase: Influence of the Chelator in the Affinity for the Enzyme. Chemical Biology and Drug Design, 2015, 86, 1072-1086.                                                                                                              | 3.2  | 8         |
| 241 | Binding free energy calculations on Eâ€selectin complexes with <scp>sL</scp> e <sup>x</sup> oligosaccharide analogs. Chemical Biology and Drug Design, 2017, 89, 114-123.                                                                                                                    | 3.2  | 8         |
| 242 | Parametrization of Molybdenum Cofactors for the AMBER Force Field. Journal of Chemical Theory and Computation, 2018, 14, 2538-2548.                                                                                                                                                          | 5.3  | 8         |
| 243 | Evolution of chromone-like compounds as potential antileishmanial agents, through the 21 <sup>st</sup> century. Expert Opinion on Drug Discovery, 2020, 15, 1425-1439.                                                                                                                       | 5.0  | 8         |
| 244 | Alkyl <i>vs.</i> aryl modifications: a comparative study on modular modifications of triphenylphosphonium mitochondrial vectors. RSC Chemical Biology, 2021, 2, 1643-1650.                                                                                                                   | 4.1  | 8         |
| 245 | Chromeno[3,4-b]xanthones as First-in-Class AChE and Aβ Aggregation Dual-Inhibitors. International Journal of Molecular Sciences, 2021, 22, 4145.                                                                                                                                             | 4.1  | 8         |
| 246 | Transmembrane Protease Serine 2 Proteolytic Cleavage of the SARS-CoV-2 Spike Protein: A Mechanistic<br>Quantum Mechanics/Molecular Mechanics Study to Inspire the Design of New Drugs To Fight the<br>COVID-19 Pandemic. Journal of Chemical Information and Modeling, 2022, 62, 2510-2521.  | 5.4  | 8         |
| 247 | Insights on Resistance to Reverse Transcriptase:Â The Different Patterns of Interaction of the<br>Nucleoside Reverse Transcriptase Inhibitors in the Deoxyribonucleotide Triphosphate Binding Site<br>Relative to the Normal Substrate. Journal of Medicinal Chemistry, 2006, 49, 7675-7682. | 6.4  | 7         |
| 248 | Detection of Farnesyltransferase Interface Hot Spots through Computational Alanine Scanning<br>Mutagenesis. Journal of Physical Chemistry B, 2011, 115, 15339-15354.                                                                                                                         | 2.6  | 7         |
| 249 | Virtual screening and QSAR study of some pyrrolidine derivatives as α-mannosidase inhibitors for binding feature analysis. Bioorganic and Medicinal Chemistry, 2012, 20, 6945-6959.                                                                                                          | 3.0  | 7         |
| 250 | Structural analysis of structurally diverse α-glucosidase inhibitors for active site feature analysis.<br>Journal of Enzyme Inhibition and Medicinal Chemistry, 2012, 27, 649-657.                                                                                                           | 5.2  | 7         |
| 251 | A DFT study of the applicability of the charge balance model in two-metal enzymes: The case of cAMP-dependent protein kinase. Chemical Physics Letters, 2013, 571, 66-70.                                                                                                                    | 2.6  | 7         |
| 252 | Binding mode prediction and identification of new lead compounds from natural products as renin and angiotensin converting enzyme inhibitors. RSC Advances, 2014, 4, 19550-19568.                                                                                                            | 3.6  | 7         |

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Structure of a truncated form of leucine zipper II of JIP3 reveals an unexpected antiparallel coiled-coil arrangement. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 198-206.          | 0.8 | 7         |
| 254 | Properties that rank protein:protein docking poses with high accuracy. Physical Chemistry Chemical Physics, 2018, 20, 20927-20942.                                                                                      | 2.8 | 7         |
| 255 | The bacterial 4S pathway – an economical alternative for crude oil desulphurization thatÂreduces CO2<br>emissions. Green Chemistry, 2020, 22, 7604-7621.                                                                | 9.0 | 7         |
| 256 | Towards the Accurate Thermodynamic Characterization of Enzyme Reaction Mechanisms.<br>ChemPhysChem, 2022, 23, e202200159.                                                                                               | 2.1 | 7         |
| 257 | The Excision Mechanism in Reverse Transcriptase:Â Pyrophosphate Leaving and Fingers Opening are<br>Uncoupled Events with the Analogues AZT and d4T. Journal of Physical Chemistry B, 2007, 111,<br>12032-12039.         | 2.6 | 6         |
| 258 | Parameterization of AZT—A widely used nucleoside inhibitor of HIV-1 reverse transcriptase.<br>International Journal of Quantum Chemistry, 2007, 107, 292-298.                                                           | 2.0 | 6         |
| 259 | The extracellular subunit interface of the 5-HT <sub>3</sub> receptors: a computational alanine scanning mutagenesis study. Journal of Biomolecular Structure and Dynamics, 2012, 30, 280-298.                          | 3.5 | 6         |
| 260 | Improving the study of proton transfers between amino acid side chains in solution: choosing appropriate DFT functionals and avoiding hidden pitfalls. Theoretical Chemistry Accounts, 2012, 131, 1.                    | 1.4 | 6         |
| 261 | Catalytic Mechanism of Retroviral Integrase for the Strand Transfer Reaction Explored by QM/MM Calculations. Journal of Chemical Theory and Computation, 2014, 10, 5458-5466.                                           | 5.3 | 6         |
| 262 | Molecular dynamic simulations and structure-based pharmacophore development for<br>farnesyltransferase inhibitors discovery. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016,<br>31, 1428-1442.              | 5.2 | 6         |
| 263 | New insights about the monomer and homodimer structures of the human AOX1. Physical Chemistry Chemical Physics, 2019, 21, 13545-13554.                                                                                  | 2.8 | 6         |
| 264 | Computational Determination of the Relative Free Energy of Binding – Application to Alanine Scanning<br>Mutagenesis. Challenges and Advances in Computational Chemistry and Physics, 2007, , 305-339.                   | 0.6 | 6         |
| 265 | Molecular Insights into the Mechanisms of HIV-1 Reverse Transcriptase Resistance to Nucleoside<br>Analogs. Mini-Reviews in Medicinal Chemistry, 2006, 6, 549-555.                                                       | 2.4 | 5         |
| 266 | Combined ligand and structure based binding mode analysis of oxidosqualene cyclase inhibitors. RSC<br>Advances, 2013, 3, 23409.                                                                                         | 3.6 | 5         |
| 267 | QSAR and Pharmacophore Analysis of a Series of Piperidinyl Urea Derivatives as hERG Blockers and H3<br>Antagonists. Current Drug Discovery Technologies, 2013, 10, 47-58.                                               | 1.2 | 5         |
| 268 | Divalent metal ion-based catalytic mechanism of the Nudix hydrolase Orf153 (YmfB)<br>from <i>Escherichia coli</i> . Acta Crystallographica Section D: Biological Crystallography, 2014, 70,<br>1297-1310.               | 2.5 | 5         |
| 269 | Calculation of distribution coefficients in the SAMPL5 challenge from atomic solvation parameters and surface areas. Journal of Computer-Aided Molecular Design, 2016, 30, 1079-1086.                                   | 2.9 | 5         |
| 270 | Synthesis and structural characterization, by spectroscopic and computational methods, of two fluorescent 3-hydroxy-4-pyridinone chelators bearing sulphorhodamine B and naphthalene. RSC Advances, 2016, 6, 4200-4211. | 3.6 | 5         |

| #   | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 271 | Understanding the Rate‣imiting Step of Glycogenolysis by Using QM/MM Calculations on Human<br>Glycogen Phosphorylase. ChemMedChem, 2018, 13, 1608-1616.                                                                                        | 3.2  | 5         |
| 272 | The Catalytic Mechanism of the Retaining Glycosyltransferase Mannosylglycerate Synthase. Chemistry<br>- A European Journal, 2021, 27, 13998-14006.                                                                                             | 3.3  | 5         |
| 273 | Necessity is the Mother of Invention: A Remote Molecular Bioinformatics Practical Course in the COVID-19 Era. Journal of Chemical Education, 2022, 99, 2147-2153.                                                                              | 2.3  | 5         |
| 274 | Atomic-Level Rational Drug Design. Current Computer-Aided Drug Design, 2006, 2, 57-81.                                                                                                                                                         | 1.2  | 4         |
| 275 | Discovery of New Sites for Drug Binding to the Hypertensionâ€Related Renin–Angiotensinogen Complex.<br>Chemical Biology and Drug Design, 2014, 83, 427-439.                                                                                    | 3.2  | 4         |
| 276 | Analyses of cobalt–ligand and potassium–ligand bond lengths in metalloproteins: trends and patterns. Journal of Molecular Modeling, 2014, 20, 2271.                                                                                            | 1.8  | 4         |
| 277 | Determining the glycation site specificity of human holo-transferrin. Journal of Inorganic<br>Biochemistry, 2018, 186, 95-102.                                                                                                                 | 3.5  | 4         |
| 278 | Membrane partition of bis-(3-hydroxy-4-pyridinonato) zinc(ii) complexes revealed by molecular dynamics simulations. RSC Advances, 2018, 8, 27081-27090.                                                                                        | 3.6  | 4         |
| 279 | A computational study on the redox properties and binding affinities of iron complexes of hydroxypyridinones. Journal of Molecular Modeling, 2019, 25, 172.                                                                                    | 1.8  | 4         |
| 280 | Glutamine synthetase structureâ€catalysis relationship—Recent advances and applications. Wiley<br>Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1399.                                                                  | 14.6 | 4         |
| 281 | Unraveling the cGAS catalytic mechanism upon DNA activation through molecular dynamics simulations. Physical Chemistry Chemical Physics, 2021, 23, 9524-9531.                                                                                  | 2.8  | 4         |
| 282 | Different Enzyme Conformations Induce Different Mechanistic Traits in HIVâ€1 Protease. Chemistry - A<br>European Journal, 2022, 28, .                                                                                                          | 3.3  | 4         |
| 283 | Design of 2-cyclopentenone derivatives with enhanced NF-κB: DNA binding inhibitory properties.<br>Computational and Theoretical Chemistry, 2004, 685, 73-82.                                                                                   | 1.5  | 3         |
| 284 | Computer Modeling and Research in the Classroom. Journal of Chemical Education, 2005, 82, 1021.                                                                                                                                                | 2.3  | 3         |
| 285 | Computational optimization of AG18051 inhibitor for amyloidâ€Î² binding alcohol dehydrogenase enzyme.<br>International Journal of Quantum Chemistry, 2008, 108, 1982-1991.                                                                     | 2.0  | 3         |
| 286 | Conformational study of two diasteroisomers of vinylcatechin dimers in a methanol solution.<br>International Journal of Quantum Chemistry, 2011, 111, 1498-1510.                                                                               | 2.0  | 3         |
| 287 | Biomolecular structure manipulation using tailored electromagnetic radiation: a proof of concept<br>on a simplified model of the active site of bacterial DNA topoisomerase. Physical Chemistry Chemical<br>Physics, 2014, 16, 21768-21777.    | 2.8  | 3         |
| 288 | A Computational and Modeling Study of the Reaction Mechanism of <i>Staphylococcus aureus</i> Monoglycosyltransferase Reveals New Insights on the GT51 Family of Enzymes. Journal of Chemical<br>Information and Modeling, 2020, 60, 5513-5528. | 5.4  | 3         |

| #   | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 289 | The role of acetylated cyclooxygenase-2 in the biosynthesis of resolvin precursors derived from eicosapentaenoic acid. Organic and Biomolecular Chemistry, 2022, 20, 1260-1274.                                                               | 2.8  | 3         |
| 290 | Molecular Dynamics Model of Unliganded HIV-1 Reverse Transcriptase. Medicinal Chemistry, 2006, 2,<br>491-498.                                                                                                                                 | 1.5  | 2         |
| 291 | In silico Based Structural Analysis of Some Piperidine Analogs as Farnesyltransferase Inhibitors.<br>Medicinal Chemistry, 2012, 8, 853-864.                                                                                                   | 1.5  | 2         |
| 292 | Cancer therapies based on enzymatic amino acid depletion. , 2017, , 623-651.                                                                                                                                                                  |      | 2         |
| 293 | Visualizing the Microscopic World. Interdisciplinary Sciences, Computational Life Sciences, 2018, 10, 105-110.                                                                                                                                | 3.6  | 2         |
| 294 | Structural, enzymatic and pharmacological profiles of AplTX-II - A basic sPLA2 (D49) isolated from the<br>Agkistrodon piscivorus leucostoma snake venom. International Journal of Biological<br>Macromolecules, 2021, 175, 572-585.           | 7.5  | 2         |
| 295 | Engineering of PKS Megaenzymes—A Promising Way to Biosynthesize High-Value Active Molecules.<br>Topics in Catalysis, 2022, 65, 544-562.                                                                                                       | 2.8  | 2         |
| 296 | Structure based virtual screening of natural product molecules as glycosidase inhibitors. In Silico<br>Pharmacology, 2021, 9, 56.                                                                                                             | 3.3  | 2         |
| 297 | Exploring the permeation of fluoroquinolone metalloantibiotics across outer membrane porins by combining molecular dynamics simulations and a porin-mimetic in vitro model. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183838. | 2.6  | 2         |
| 298 | Modern Strategies for the Diversification of the Supply of Natural Compounds: The Case of Alkaloid<br>Painkillers. ChemBioChem, 2021, , .                                                                                                     | 2.6  | 2         |
| 299 | New designs for inhibitors of the NF-Î $^{ m B}$ : DNA binding. Theoretical Chemistry Accounts, 2005, 113, 197-204.                                                                                                                           | 1.4  | 1         |
| 300 | Lead Optimisation: Improving the Affinity of the Antiretrovirals Nelfinavir and Amprenavir for HIV-1<br>Protease. Letters in Drug Design and Discovery, 2006, 3, 383-389.                                                                     | 0.7  | 1         |
| 301 | Structural analysis of ABAD point mutations causing 2â€methylâ€3â€hydroxylbutyrylâ€coA deficiency.<br>International Journal of Quantum Chemistry, 2010, 110, 148-160.                                                                         | 2.0  | 1         |
| 302 | <scp>chemâ€pathâ€tracker</scp> : An Automated Tool to Analyze Chemical Motifs in Molecular<br>Structures. Chemical Biology and Drug Design, 2014, 84, 44-53.                                                                                  | 3.2  | 1         |
| 303 | Studies on neuraminidase inhibition. International Journal of Quantum Chemistry, 2018, 118, e25592.                                                                                                                                           | 2.0  | 1         |
| 304 | Structure, Dynamics, and Energetics of ATP Hydrolysis by ABC Transporters. ACS Central Science, 2018, 4, 1300-1302.                                                                                                                           | 11.3 | 1         |
| 305 | CompASM: an Amber-VMD alanine scanning mutagenesis plug-in. Highlights in Theoretical Chemistry, 2014, , 81-87.                                                                                                                               | 0.0  | 1         |
| 306 | Catalysis and Inhibition of HIV-1 Protease. Current Bioactive Compounds, 2006, 2, 243-261.                                                                                                                                                    | 0.5  | 1         |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Are Hot-Spots Occluded from Water?. Biophysical Journal, 2013, 104, 505a.                                                                                                                                          | 0.5 | 0         |
| 308 | Influence of the environment on protein bond energies. Chemical Physics Letters, 2014, 615, 75-82.                                                                                                                 | 2.6 | 0         |
| 309 | Molecular Dynamics Analysis of FAAH Complexed with Anandamide. Progress in Theoretical Chemistry and Physics, 2015, , 115-131.                                                                                     | 0.2 | Ο         |
| 310 | Binding mode of conformations and structure-based pharmacophore development for farnesyltransferase inhibitors. Medicinal Chemistry Research, 2016, 25, 1340-1357.                                                 | 2.4 | 0         |
| 311 | Drug Permeation Across the Bacterial Membrane: Combining Theoretical and Experimental Approaches.<br>Biophysical Journal, 2019, 116, 206a.                                                                         | 0.5 | Ο         |
| 312 | Thermophilic Enzymes. U Porto Journal of Engineering, 2021, 7, 13-23.                                                                                                                                              | 0.4 | 0         |
| 313 | Computational Studies on the Mechanism of Farnesyltransferase. , 2021, , 1-7.                                                                                                                                      |     | Ο         |
| 314 | Targeting Ribonucleotide Reductase for Cancer Chemotherapy. , 2011, , 1-30.                                                                                                                                        |     | 0         |
| 315 | Improving the study of proton transfers between amino acid side chains in solution: choosing<br>appropriate DFT functionals and avoiding hidden pitfalls. Highlights in Theoretical Chemistry, 2013, ,<br>199-205. | 0.0 | Ο         |
| 316 | Human Ether-a-Go-Go-Related Gene Channel Blockers and its Structural Analysis for Drug Design.<br>Current Drug Targets, 2012, 14, 102-113.                                                                         | 2.1 | 0         |
| 317 | Prémio Nobel da QuÃmica 2013. Revista De Ciência Elementar, 2013, 1, .                                                                                                                                             | 0.0 | 0         |
| 318 | Ribonucleotide-Diphosphate Reductase (RNR). , 2020, , 1-6.                                                                                                                                                         |     | 0         |
| 319 | Binding Mode Prediction and Identification of New Lead Compounds from Natural Products as 3-OST Enzyme Inhibitors. Letters in Drug Design and Discovery, 2020, 17, 1186-1196.                                      | 0.7 | 0         |
| 320 | Cover Feature: Different Enzyme Conformations Induce Different Mechanistic Traits in HIVâ€1 Protease<br>(Chem. Eur. J. 42/2022). Chemistry - A European Journal, 2022, 28, .                                       | 3.3 | 0         |