Jingying Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8496814/publications.pdf

Version: 2024-02-01

257450 289244 64 1,836 24 40 citations h-index g-index papers 64 64 64 2346 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Advances in Multi-Sensor Data Fusion: Algorithms and Applications. Sensors, 2009, 9, 7771-7784.	3.8	249
2	Spatio-Temporal Variation of PM2.5 Concentrations and Their Relationship with Geographic and Socioeconomic Factors in China. International Journal of Environmental Research and Public Health, 2014, 11, 173-186.	2.6	192
3	Integrated Health Risk Assessment of Heavy Metals in Suxian County, South China. International Journal of Environmental Research and Public Health, 2015, 12, 7100-7117.	2.6	92
4	Mapping the spatial distribution of Aedes aegypti and Aedes albopictus. Acta Tropica, 2018, 178, 155-162.	2.0	78
5	Evaluating the spatio-temporal variation of China's offshore wind resources based on remotely sensed wind field data. Renewable and Sustainable Energy Reviews, 2013, 24, 142-148.	16.4	62
6	Comprehensive Assessment of Production–Living–Ecological Space Based on the Coupling Coordination Degree Model. Sustainability, 2020, 12, 2009.	3.2	56
7	An ecological analysis of PM _{2.5} concentrations and lung cancer mortality rates in China. BMJ Open, 2015, 5, e009452.	1.9	55
8	Monitoring the Invasion of i>Spartina alterniflora / i> Using Very High Resolution Unmanned Aerial Vehicle Imagery in Beihai, Guangxi (China). Scientific World Journal, The, 2014, 2014, 1-7.	2.1	53
9	Understanding the dynamics of terrorism events with multiple-discipline datasets and machine learning approach. PLoS ONE, 2017, 12, e0179057.	2.5	47
10	Mapping the transmission risk of Zika virus using machine learning models. Acta Tropica, 2018, 185, 391-399.	2.0	45
11	Potential bioethanol production from sweet sorghum on marginal land in China. Journal of Cleaner Production, 2019, 220, 225-234.	9.3	44
12	Improvement of Ecological Footprint Model in National Nature Reserve Based on Net Primary Production (NPP). Sustainability, 2019, 11, 2.	3.2	43
13	A Review on the Overall Optimization of Production–Living–Ecological Space: Theoretical Basis and Conceptual Framework. Land, 2022, 11, 345.	2.9	40
14	Spatial-temporal variation of marginal land suitable for energy plants from 1990 to 2010 in China. Scientific Reports, 2015, 4, 5816.	3.3	37
15	Spatiotemporal Patterns and Risk Factors for Scrub Typhus From 2007 to 2017 in Southern China. Clinical Infectious Diseases, 2019, 69, 1205-1211.	5.8	37
16	Assessment of the biomass energy potentials and environmental benefits of Jatropha curcas L. in Southwest China. Biomass and Bioenergy, 2013, 56, 342-350.	5.7	36
17	The Review of GRACE Data Applications in Terrestrial Hydrology Monitoring. Advances in Meteorology, 2014, 2014, 1-9.	1.6	35
18	Evaluating the Marginal Land Resources Suitable for Developing Bioenergy in Asia. Advances in Meteorology, 2014, 2014, 1-9.	1.6	35

#	Article	IF	CITATIONS
19	Spatial Conflict of Production–Living–Ecological Space and Sustainable-Development Scenario Simulation in Yangtze River Delta Agglomerations. Sustainability, 2020, 12, 2175.	3.2	35
20	Calculating the burden of disease of avian-origin H7N9 infections in China. BMJ Open, 2014, 4, e004189.	1.9	32
21	Spatial Variation of the Relationship between PM _{2.5} Concentrations and Meteorological Parameters in China. BioMed Research International, 2015, 2015, 1-15.	1.9	31
22	Simulating Spatio-Temporal Patterns of Terrorism Incidents on the Indochina Peninsula with GIS and the Random Forest Method. ISPRS International Journal of Geo-Information, 2019, 8, 133.	2.9	31
23	Production–Living–Ecological Conflict Identification Using a Multiscale Integration Model Based on Spatial Suitability Analysis and Sustainable Development Evaluation: A Case Study of Ningbo, China. Land, 2021, 10, 383.	2.9	31
24	Spatial distribution of usable biomass feedstock and technical bioenergy potential in China. GCB Bioenergy, 2020, 12, 54-70.	5.6	27
25	Evaluation of Hyperspectral Indices for Chlorophyll-a Concentration Estimation in Tangxun Lake (Wuhan, China). International Journal of Environmental Research and Public Health, 2010, 7, 2437-2451.	2.6	26
26	Potential marginal land resources of cassava worldwide: A data-driven analysis. Renewable and Sustainable Energy Reviews, 2019, 104, 167-173.	16.4	26
27	Assessment of Sweet Sorghum-Based Ethanol Potential in China within the Water–Energy–Food Nexus Framework. Sustainability, 2018, 10, 1046.	3.2	24
28	Could biofuel development stress China's water resources?. GCB Bioenergy, 2017, 9, 1447-1460.	5.6	20
29	Switchgrass-Based Bioethanol Productivity and Potential Environmental Impact from Marginal Lands in China. Energies, 2017, 10, 260.	3.1	20
30	Evaluating energy benefit of Pistacia chinensis based biodiesel in China. Renewable and Sustainable Energy Reviews, 2014, 35, 258-264.	16.4	17
31	Estimating the potential of energy saving and carbon emission mitigation of cassava-based fuel ethanol using life cycle assessment coupled with a biogeochemical process model. International Journal of Biometeorology, 2019, 63, 701-710.	3.0	17
32	Mapping the Potential Global Codling Moth (Cydia pomonella L.) Distribution Based on a Machine Learning Method. Scientific Reports, 2018, 8, 13093.	3.3	16
33	A spatial shift-share decomposition of energy consumption changes in China. Energy Policy, 2019, 135, 111034.	8.8	15
34	Risk factors and predicted distribution of visceral leishmaniasis in the Xinjiang Uygur Autonomous Region, China, 2005–2015. Parasites and Vectors, 2019, 12, 528.	2.5	15
35	Spatial Relationships of Water Resources with Energy Consumption at Coal Mining Operations in China. Mine Water and the Environment, 2020, 39, 407-415.	2.0	13
36	An improved approach for modeling spatial distribution of water use profitâ€"A case study in Tuhai Majia Basin, China. Ecological Indicators, 2014, 36, 94-99.	6.3	12

#	Article	IF	Citations
37	Evaluating the bioenergy potential of cassava on marginal land using a biogeochemical process model in GuangXi, China. Journal of Applied Remote Sensing, 2015, 9, 097699.	1.3	12
38	On the Risk Assessment of Terrorist Attacks Coupled with Multi-Source Factors. ISPRS International Journal of Geo-Information, 2018, 7, 354.	2.9	12
39	Spatial Variability and Ecological Effects of Anthropogenic Activities in a Nature Reserve: A Case Study in the Baijitan National Nature Reserve, China. Sustainability, 2017, 9, 239.	3.2	11
40	Water Use of Fossil Energy Production and Supply in China. Water (Switzerland), 2017, 9, 513.	2.7	11
41	Multi-Scenario Analysis of Energy Consumption and Carbon Emissions: The Case of Hebei Province in China. Energies, 2019, 12, 624.	3.1	11
42	Simulating Spatiotemporal Dynamics of Sichuan Grassland Net Primary Productivity Using the CASA Model and In Situ Observations. Scientific World Journal, The, 2014, 2014, 1-12.	2.1	10
43	Spatiotemporal Variation and Hotspot Detection of the Avian Influenza A(H7N9) Virus in China, 2013–2017. International Journal of Environmental Research and Public Health, 2019, 16, 648.	2.6	10
44	Assessment of liquid biofuel potential from energy crops within the sustainable water–land–energy–carbon nexus. Sustainable Energy and Fuels, 2021, 5, 351-366.	4.9	10
45	Spatiotemporal Variation and Hot Spot Detection of Visceral Leishmaniasis Disease in Kashi Prefecture, China. International Journal of Environmental Research and Public Health, 2018, 15, 2784.	2.6	9
46	Simulation of the Growth Potential of Sugarcane as an Energy Crop Based on the APSIM Model. Energies, 2020, 13, 2173.	3.1	9
47	Location Recommendation of Digital Signage Based on Multi-Source Information Fusion. Sustainability, 2018, 10, 2357.	3.2	8
48	Mapping Global Environmental Suitability for Sorghum bicolor (L.) Moench. Energies, 2019, 12, 1928.	3.1	8
49	Assessing the sweet sorghum-based ethanol potential on saline–alkali land with DSSAT model and LCA approach. Biotechnology for Biofuels, 2021, 14, 44.	6.2	8
50	Analysis of Yield Potential and Regional Distribution for Bioethanol in China. Energies, 2021, 14, 4554.	3.1	8
51	Surface water deficiency zoning of China based on surface water deficit index (SWDI). Water Resources, 2014, 41, 372-378.	0.9	7
52	Assessing the Sustainable Development of Bioenergy from Cassava within "Water-Energy-Food―Nexus Framework in China. Sustainability, 2018, 10, 2153.	3.2	6
53	Simulating the Linkages Between Economy and Armed Conflict in India With a Long Shortâ€√erm Memory Algorithm. Risk Analysis, 2020, 40, 1139-1150.	2.7	6
54	A Multilevel Recognition Model of Water Inrush Sources: A Case Study of the Zhaogezhuang Mining Area. Mine Water and the Environment, 2021, 40, 773-782.	2.0	6

#	Article	IF	Citations
55	Optimization of Production–Living–Ecological Space in National Key Poverty-Stricken City of Southwest China. Land, 2022, 11, 411.	2.9	6
56	A Kalman Filter-Based Method for Reconstructing GMS-5 Global Solar Radiation by Introduction of In Situ Data. Energies, 2013, 6, 2804-2818.	3.1	4
57	Assessment of the GHG Reduction Potential from Energy Crops Using a Combined LCA and Biogeochemical Process Models: A Review. Scientific World Journal, The, 2014, 2014, 1-10.	2.1	4
58	Spatial Characteristic of Coal Production-Based Carbon Emissions in Chinese Mining Cities. Energies, 2020, 13, 453.	3.1	4
59	Spatiotemporal Distribution of U5MR and Their Relationship with Geographic and Socioeconomic Factors in China. International Journal of Environmental Research and Public Health, 2017, 14, 1428.	2.6	3
60	Sustainable Development of Sweet Sorghum-Based Fuel Ethanol from the Perspective of Water Resources in China. Sustainability, 2018, 10, 3428.	3.2	3
61	Dynamic monitoring of drought using HJ-1 and MODIS time series data in northern China. Natural Hazards, 2013, 68, 337-350.	3.4	2
62	Spatio-temporal simulation of the geopolitical environment system. Journal of Chinese Geography, 2018, 28, 871-880.	3.9	2
63	Spatiotemporal Evolution Characteristics and the Climatic Response of Carbon Sources and Sinks in the Chinese Grassland Ecosystem from 2010 to 2020. Sustainability, 2022, 14, 8461.	3.2	2
64	Evaluating the Marginal Land Resources Suitable for Developing Bioenergy in Asia: Evaluating the Marginal Land Resources Suitable for Developing Bioenergy in Asia., 2015,, 83-100.		O