Matthias Suter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8496500/publications.pdf Version: 2024-02-01

MATTHIAS SUITED

#	Article	IF	CITATIONS
1	Massive warming-induced carbon loss from subalpine grassland soils in an altitudinal transplantation experiment. Biogeosciences, 2022, 19, 2921-2937.	3.3	6
2	Timing of drought in the growing season and strong legacy effects determine the annual productivity of temperate grasses in a changing climate. Biogeosciences, 2021, 18, 585-604.	3.3	21
3	Multispecies for multifunctions: combining four complementary species enhances multifunctionality of sown grassland. Scientific Reports, 2021, 11, 3835.	3.3	25
4	Subalpine grassland productivity increased with warmer and drier conditions, but not with higher N deposition, in an altitudinal transplantation experiment. Biogeosciences, 2021, 18, 2075-2090.	3.3	6
5	Positive legacy effect of previous legume proportion in a ley on the performance of a following crop of Lolium multiflorum. Plant and Soil, 2020, 447, 497-506.	3.7	12
6	Choosy grazers: Influence of plant traits on forage selection by three cattle breeds. Functional Ecology, 2020, 34, 980-992.	3.6	33
7	Greater gains in annual yields from increased plant diversity than losses from experimental drought in two temperate grasslands. Agriculture, Ecosystems and Environment, 2018, 258, 149-153.	5.3	24
8	Weed suppression greatly increased by plant diversity in intensively managed grasslands: A continentalâ€scale experiment. Journal of Applied Ecology, 2018, 55, 852-862.	4.0	52
9	Species interactions between forbs and grass-clover contribute to yield gains and weed suppression in forage grassland mixtures. Agriculture, Ecosystems and Environment, 2018, 268, 154-161.	5.3	24
10	Higher species richness enhances yield stability in intensively managed grasslands with experimental disturbance. Scientific Reports, 2018, 8, 15047.	3.3	52
11	Grass–legume mixtures sustain strong yield advantage over monocultures under cool maritime growing conditions over a period of 5 years. Annals of Botany, 2018, 122, 337-348.	2.9	23
12	Major shifts in species' relative abundance in grassland mixtures alongside positive effects of species diversity in yield: a continentalâ€scale experiment. Journal of Ecology, 2017, 105, 1210-1222.	4.0	43
13	Weed suppression enhanced by increasing functional trait dispersion and resource capture in forage ley mixtures. Agriculture, Ecosystems and Environment, 2017, 240, 329-339.	5.3	25
14	Nitrogen status of functionally different forage species explains resistance to severe drought and post-drought overcompensation. Agriculture, Ecosystems and Environment, 2017, 236, 312-322.	5.3	84
15	Severe water deficit restricts biomass production of Lolium perenne L. and Trifolium repens L. and causes foliar nitrogen but not carbohydrate limitation. Plant and Soil, 2017, 421, 367-380.	3.7	14
16	Yield of temperate forage grassland species is either largely resistant or resilient to experimental summer drought. Journal of Applied Ecology, 2016, 53, 1023-1034.	4.0	101
17	Gain in Nitrogen Yield from Grass-Legume Mixtures is Robust Over a Wide Range of Legume Proportions and Environmental Conditions. Procedia Environmental Sciences, 2015, 29, 187-188. 	1.4	7
18	Nitrogen yield advantage from grass–legume mixtures is robust over a wide range of legume proportions and environmental conditions. Global Change Biology, 2015, 21, 2424-2438.	9.5	135

MATTHIAS SUTER

#	Article	IF	CITATIONS
19	Do belowground vertical niche differences between deep- and shallow-rooted species enhance resource uptake and drought resistance in grassland mixtures?. Plant and Soil, 2015, 394, 21-34.	3.7	64
20	Testing experimentally the effect of soil resource mobility on plant competition. Journal of Plant Ecology, 2014, 7, 276-286.	2.3	7
21	Convergent succession of plant communities is linked to species' functional traits. Perspectives in Plant Ecology, Evolution and Systematics, 2013, 15, 217-225.	2.7	22
22	An improved model to predict the effects of changing biodiversity levels on ecosystem function. Journal of Ecology, 2013, 101, 344-355.	4.0	56
23	Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: a 3â€year continentalâ€scale field experiment. Journal of Applied Ecology, 2013, 50, 365-375.	4.0	247
24	Simulating evolutionary responses of an introgressed insect resistance trait for ecological effect assessment of transgene flow: a model for supporting informed decisionâ€making in environmental risk assessment. Ecology and Evolution, 2013, 3, 416-423.	1.9	5
25	Significance of different types of meadow edges for plant diversity in the Swiss Alps. Agriculture, Ecosystems and Environment, 2012, 153, 75-81.	5.3	4
26	Different types of subâ€alpine grassland respond similarly to elevated nitrogen deposition in terms of productivity and sedge abundance. Journal of Vegetation Science, 2012, 23, 1024-1034.	2.2	24
27	Measures for the control of <i>Senecio aquaticus</i> in managed grassland. Weed Research, 2011, 51, 601-611.	1.7	16
28	Grass–legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agriculture, Ecosystems and Environment, 2011, 140, 155-163.	5.3	281
29	Species identity and negative density dependence lead to convergence in designed plant mixtures of twelve species. Basic and Applied Ecology, 2010, 11, 627-637.	2.7	8
30	Reproductive allocation of Carex flava reacts differently to competition and resources in a designed plant mixture of five species. Plant Ecology, 2009, 201, 481-489.	1.6	4
31	Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding. Journal of Applied Ecology, 2009, 46, 683-691.	4.0	226
32	Competition alters plant species response to nickel and zinc. Plant and Soil, 2008, 303, 241-251.	3.7	21
33	Occurrence of <i>Senecio aquaticus</i> in relation to grassland management. Applied Vegetation Science, 2008, 11, 317-324.	1.9	18
34	Can the occurrence of Senecio jacobaea be influenced by management practice?. Weed Research, 2007, 47, 262-269.	1.7	22
35	Nitrogen deposition but not ozone affects productivity and community composition of subalpine grassland after 3 yr of treatment. New Phytologist, 2007, 175, 523-534.	7.3	91
36	Convergence patterns and multiple species interactions in a designed plant mixture of five species. Oecologia, 2007, 151, 499-511.	2.0	28

#	Article	IF	CITATIONS
37	Investigations into the Genetic Variation, Population Structure, and Breeding Systems of the FernAsplenium trichomanessubsp.quadrivalens. International Journal of Plant Sciences, 2000, 161, 233-244.	1.3	45