Jannick P Rolland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8496476/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Schemes for cubature over the unit disk found via numerical optimization. Journal of Computational and Applied Mathematics, 2022, 407, 114076.	2.0	2
2	Freeform optics: introduction. Optics Express, 2022, 30, 6450.	3.4	12
3	Assessing corneal cross-linking with reverberant 3D optical coherence elastography. Journal of Biomedical Optics, 2022, 27, .	2.6	5
4	Experimental investigation in nodal aberration theory (NAT): separation of astigmatic figure error from misalignments in a Cassegrain telescope. Optics Express, 2022, 30, 11150.	3.4	3
5	Speckle statistics of cortical brain tissue in optical coherence tomography. , 2022, , .		0
6	Local Burr distribution estimator for speckle statistics. Biomedical Optics Express, 2022, 13, 2334.	2.9	1
7	Near-Histologic Resolution Images of Cervical Dysplasia Obtained With Gabor Domain Optical Coherence Microscopy. Journal of Lower Genital Tract Disease, 2021, 25, 137-141.	1.9	4
8	Verification of cascade optical coherence tomography for freeform optics form metrology. Optics Express, 2021, 29, 8542.	3.4	1
9	Metaform optics: Bridging nanophotonics and freeform optics. Science Advances, 2021, 7, .	10.3	50
10	Experimental investigation of binodal astigmatism in nodal aberration theory (NAT) with a Cassegrain telescope system. Optics Express, 2021, 29, 19427.	3.4	7
11	Speckle statistics of biological tissues in optical coherence tomography. Biomedical Optics Express, 2021, 12, 4179.	2.9	14
12	Roadmap for the unobscured three-mirror freeform design space. Optics Express, 2021, 29, 26736.	3.4	15
13	Freeform optics for imaging. Optica, 2021, 8, 161.	9.3	178
14	Freeform hyperspectral imager design in a CubeSat format. Optics Express, 2021, 29, 35915.	3.4	19
15	Survey of the four-mirror freeform imager solution space. Optics Express, 2021, 29, 41534.	3.4	6
16	Experimental investigation of third-order binodal astigmatism in Nodal Aberration Theory (NAT) with a Cassegrain system. , 2021, , .		0
17	Aberration-based design example for freeform optical designs with base off-axis conics. , 2021, , .		0
18	Connecting tolerancing of freeform surface deformation in illumination optics with the Laplacian magic mirror. Optics Express, 2021, 29, 40559.	3.4	4

#	Article	IF	CITATIONS
19	Specification sweep for three-mirror freeform imagers. , 2021, , .		0
20	CubeSat Format Freeform Hyperspectral Imager. , 2021, , .		0
21	Fifth-order Aberration Coefficients for Plane-symmetric Optical Systems. , 2021, , .		0
22	In vivo imaging of corneal nerves and cellular structures in mice with Gabor-domain optical coherence microscopy. Biomedical Optics Express, 2020, 11, 711.	2.9	18
23	Off-axis conics as base surfaces for freeform optics enable null testability. Optics Express, 2020, 28, 10859.	3.4	12
24	Cascade optical coherence tomography (C-OCT). Optics Express, 2020, 28, 19937.	3.4	2
25	Roland V. Shack's discovery of nodal aberration theory, the expansion into the aberrations of freeform optics, and impact in optical design. , 2020, , .		1
26	Ten Years of Gabor-Domain Optical Coherence Microscopy. Applied Sciences (Switzerland), 2019, 9, 2565.	2.5	10
27	Reverberant 3D optical coherence elastography maps the elasticity of individual corneal layers. Nature Communications, 2019, 10, 4895.	12.8	77
28	Design for metrology for freeform optics manufacturing. Procedia CIRP, 2019, 84, 169-172.	1.9	6
29	Gabor-domain optical coherence tomography to aid in Mohs resection of basal cell carcinoma. Journal of the American Academy of Dermatology, 2019, 80, 1766-1769.	1.2	11
30	Quantitative assessment of human donor corneal endothelium with Gabor domain optical coherence microscopy. Journal of Biomedical Optics, 2019, 24, 1.	2.6	4
31	Longitudinal shear waves for elastic characterization of tissues in optical coherence elastography. Biomedical Optics Express, 2019, 10, 3699.	2.9	28
32	Gabor domain optical coherence microscopy combined with laser scanning confocal fluorescence microscopy. Biomedical Optics Express, 2019, 10, 6242.	2.9	5
33	Automatic Solution Space Exploration for Freeform Optical Design. , 2019, , .		3
34	On-the-fly surface manufacturability constraints for freeform optical design enabled by orthogonal polynomials. Optics Express, 2019, 27, 6129.	3.4	24
35	Telecentric broadband objective lenses for optical coherence tomography (OCT) in the context of low uncertainty metrology of freeform optical components: from design to testing for wavefront and telecentricity. Optics Express, 2019, 27, 6184.	3.4	6
36	Effect of freeform surfaces on the volume and performance of unobscured three mirror imagers in comparison with off-axis rotationally symmetric polynomials. Optics Express, 2019, 27, 21750.	3.4	33

#	Article	IF	CITATIONS
37	All-reflective electronic viewfinder enabled by freeform optics. Optics Express, 2019, 27, 30597.	3.4	13
38	Absolute linear-in-k spectrometer designs enabled by freeform optics. Optics Express, 2019, 27, 34593.	3.4	19
39	System design of a single-shot reconfigurable null test using a spatial light modulator for freeform metrology. Optics Letters, 2019, 44, 2000.	3.3	30
40	See-through reflective metasurface diffraction grating. Optical Materials Express, 2019, 9, 4070.	3.0	6
41	Capabilities of Gabor-domain optical coherence microscopy for the assessment of corneal disease. Journal of Biomedical Optics, 2019, 24, 1.	2.6	8
42	Lateral eyes direct principal eyes as jumping spiders track objects. Current Biology, 2018, 28, R1092-R1093.	3.9	40
43	Long-term efficiency preservation for gradient phase metasurface diffraction gratings in the visible. Optical Materials Express, 2018, 8, 2125.	3.0	5
44	Experimental investigation in nodal aberration theory (NAT) with a customized Ritchey-Chrétien system: third-order coma. Optics Express, 2018, 26, 8729.	3.4	10
45	Point-cloud noncontact metrology of freeform optical surfaces. Optics Express, 2018, 26, 10242.	3.4	23
46	Starting geometry creation and design method for freeform optics. Nature Communications, 2018, 9, 1756.	12.8	160
47	Starting point designs for freeform four-mirror systems. Optical Engineering, 2018, 57, 1.	1.0	26
48	Degeneracy in freeform surfaces described with orthogonal polynomials. Applied Optics, 2018, 57, 10348.	1.8	19
49	Comparative study of shear wave-based elastography techniques in optical coherence tomography. Journal of Biomedical Optics, 2017, 22, 035010.	2.6	39
50	TFOS DEWS II Tear Film Report. Ocular Surface, 2017, 15, 366-403.	4.4	610
51	Freeform spectrometer enabling increased compactness. Light: Science and Applications, 2017, 6, e17026-e17026.	16.6	189
52	An approach to viscoelastic characterization of dispersive media by inversion of a general wave propagation model. Journal of Innovative Optical Health Sciences, 2017, 10, 1742008.	1.0	21
53	How good is your lens? Assessing performance with MTF full-field displays. Applied Optics, 2017, 56, 5661.	1.8	12
54	Design, fabrication, and testing of convex reflective diffraction gratings. Optics Express, 2017, 25, 15252.	3.4	25

#	Article	IF	CITATIONS
55	In vivo thickness dynamics measurement of tear film lipid and aqueous layers with optical coherence tomography and maximum-likelihood estimation. Optics Letters, 2016, 41, 1981.	3.3	21
56	MEMS-based handheld scanning probe with pre-shaped input signals for distortion-free images in Gabor-domain optical coherence microscopy. Optics Express, 2016, 24, 13365.	3.4	77
57	Optical Assessment of Soft Contact Lens Edge-Thickness. Optometry and Vision Science, 2016, 93, 987-996.	1.2	11
58	Experimental classification of surface waves in optical coherence elastography. Proceedings of SPIE, 2016, , .	0.8	8
59	Crawling wave optical coherence elastography. Optics Letters, 2016, 41, 847.	3.3	26
60	A comparative study of shear wave speed estimation techniques in optical coherence elastography applications. Proceedings of SPIE, 2016, , .	0.8	1
61	Spectral fusing Gabor domain optical coherence microscopy. Optics Letters, 2016, 41, 508.	3.3	12
62	Comparison between optical-resolution photoacoustic microscopy and confocal laser scanning microscopy for turbid sample imaging. Journal of Biomedical Optics, 2015, 20, 121306.	2.6	7
63	Design of a freeform electronic viewfinder coupled to aberration fields of freeform optics. Optics Express, 2015, 23, 28141.	3.4	40
64	Interferometric measurement of a concave, φ-polynomial, Zernike mirror. Optics Letters, 2014, 39, 18.	3.3	49
65	Parallelized multi–graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy. Journal of Biomedical Optics, 2014, 19, 071410.	2.6	23
66	A page from "the drawer": how Roland Shack opened the door to the aberration theory of freeform optics. , 2014, , .		4
67	Measurement of a multi-layered tear film phantom using optical coherence tomography and statistical decision theory. Biomedical Optics Express, 2014, 5, 4374.	2.9	30
68	Visual space assessment of two all-reflective, freeform, optical see-through head-worn displays. Optics Express, 2014, 22, 13155.	3.4	76
69	Theory of aberration fields for general optical systems with freeform surfaces. Optics Express, 2014, 22, 26585.	3.4	168
70	Assembly of a freeform off-axis optical system employing three φ-polynomial Zernike mirrors. Optics Letters, 2014, 39, 2896.	3.3	75
71	Optical Coherence Tomography Enabling Non Destructive Metrology of Layered Polymeric GRIN Material. Scientific Reports, 2013, 3, .	3.3	51
72	Hybrid RBF and local ï•polynomial freeform surfaces. Advanced Optical Technologies, 2013, 2, 81-88.	1.7	19

#	Article	IF	CITATIONS
73	Target flux estimation by calculating intersections between neighboring conic reflector patches. Optics Letters, 2013, 38, 5012.	3.3	20
74	Extending Nodal Aberration Theory to include mount-induced aberrations with application to freeform surfaces. Optics Express, 2012, 20, 20139.	3.4	54
75	Observation of the Gouy phase anomaly in astigmatic beams. Applied Optics, 2012, 51, 2902.	1.8	11
76	Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy. Journal of Biomedical Optics, 2012, 17, 1.	2.6	45
77	Optical coherence imaging for monitoring of microscopic flow in biological samples. , 2012, , .		0
78	Freeform Optical Surfaces: A Revolution in Imaging Optical Design. Optics and Photonics News, 2012, 23, 30.	0.5	131
79	Virtual skin biopsy with Gabor Domain optical coherence microscopy. Studies in Health Technology and Informatics, 2012, 173, 398-404.	0.3	3
80	Illumination devices for uniform delivery of light to the oral cavity for photodynamic therapy. , 2011, , \cdot		0
81	A new family of optical systems employing φ-polynomial surfaces. Optics Express, 2011, 19, 21919.	3.4	150
82	Broadband Fourier-domain mode-locked lasers. Photonic Sensors, 2011, 1, 222-227.	5.0	8
83	57.3: <i>Invited Paper</i> : Headâ€worn Displays ―Lens Design. Digest of Technical Papers SID International Symposium, 2010, 41, 855-858.	0.3	2
84	Misalignment-induced nodal aberration fields in two-mirror astronomical telescopes. Applied Optics, 2010, 49, D131.	2.1	42
85	Assessment of a liquid lens enabled in vivooptical coherence microscope. Applied Optics, 2010, 49, D145.	2.1	33
86	Gabor-based fusion technique for Optical Coherence Microscopy. Optics Express, 2010, 18, 3632.	3.4	110
87	A unique astigmatic nodal property in misaligned Ritchey-Chrétien telescopes with misalignment coma removed. Optics Express, 2010, 18, 5282.	3.4	33
88	Fast freeform reflector generation using†source-target maps. Optics Express, 2010, 18, 5295.	3.4	244
89	Separation of the effects of astigmatic figure error from misalignments using Nodal Aberration Theory (NAT). Optics Express, 2010, 18, 17433.	3.4	57
90	Broadband astigmatism-corrected â€ Czerny–Turner spectrometer. Optics Express, 2010, 18, 23378.	3.4	96

#	Article	IF	CITATIONS
91	Three-dimensional adaptive microscopy using embedded liquid lens. Optics Letters, 2009, 34, 145.	3.3	102
92	Real-ray-based method for locating individual surface aberration field centers in imaging optical systems without rotational symmetry. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2009, 26, 1503.	1.5	92
93	From the symposium general chairs. , 2009, , .		0
94	Application of radial basis functions to shape description in a dual-element off-axis magnifier. Optics Letters, 2008, 33, 1237.	3.3	45
95	Differential Shack-Hartmann curvature sensor: local principal curvature measurements. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2008, 25, 2331.	1.5	22
96	Optimal local shape description for rotationally non-symmetric optical surface design and analysis. Optics Express, 2008, 16, 1583.	3.4	118
97	The misalignment induced aberrations of TMA telescopes. Optics Express, 2008, 16, 20345.	3.4	63
98	Dispersion control with a Fourier-domain optical delay line in a fiber-optic imaging interferometer. Applied Optics, 2005, 44, 4009.	2.1	29