
Bahman Amini Horri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8496352/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adsorption of dyes by nanomaterials: Recent developments and adsorption mechanisms. Separation and Purification Technology, 2015, 150, 229-242.	3.9	582
2	Solar evaporation enhancement using floating light-absorbing magnetic particles. Energy and Environmental Science, 2011, 4, 4074.	15.6	258
3	Progress in Material Development for Low-Temperature Solid Oxide Fuel Cells: A Review. Energies, 2021, 14, 1280.	1.6	65
4	Characteristics of Ni/YSZ ceramic anode prepared using carbon microspheres as a pore former. International Journal of Hydrogen Energy, 2012, 37, 15311-15319.	3.8	58
5	A new empirical viscosity model for ceramic suspensions. Chemical Engineering Science, 2011, 66, 2798-2806.	1.9	52
6	Chitosan/halloysite beads fabricated by ultrasonic-assisted extrusion-dripping and a case study application for copper ion removal. Carbohydrate Polymers, 2016, 138, 16-26.	5.1	52
7	Electrospun poly-caprolactone/graphene oxide/quercetin nanofibrous scaffold for wound dressing: Evaluation of biological and structural properties. Life Sciences, 2020, 257, 118062.	2.0	48
8	Biogas Upgrading Via Dry Reforming Over a Ni-Sn/CeO2-Al2O3 Catalyst: Influence of the Biogas Source. Energies, 2019, 12, 1007.	1.6	46
9	Biological and structural properties of graphene oxide/curcumin nanocomposite incorporated chitosan as a scaffold for wound healing application. Life Sciences, 2021, 264, 118640.	2.0	42
10	Development of self-assembled nanocrystalline cellulose as a promising practical adsorbent for methylene blue removal. Carbohydrate Polymers, 2018, 199, 92-101.	5.1	36
11	Vanadium oxide decorated carbon nanotubes as a promising support of Pt nanoparticles for methanol electro-oxidation reaction. Journal of Colloid and Interface Science, 2013, 393, 291-299.	5.0	31
12	Physicochemical stability of calcium alginate beads immobilizing TiO ₂ nanoparticles for removal of cationic dye under UV irradiation. Journal of Applied Polymer Science, 2017, 134, .	1.3	28
13	Synthesis and characterization of NiO and Ni nanoparticles using nanocrystalline cellulose (NCC) as a template. Ceramics International, 2017, 43, 16331-16339.	2.3	26
14	Nanocrystalline gadolinium-doped ceria (GDC) for SOFCs by an environmentally-friendly single step method. Ceramics International, 2018, 44, 13286-13292.	2.3	25
15	Electrochemical characteristics and performance of anode-supported SOFCs fabricated using carbon microspheres as a pore-former. International Journal of Hydrogen Energy, 2012, 37, 19045-19054.	3.8	20
16	Synthesis and characterization of nanocrystalline NiO-GDC via sodium alginate-mediated ionic sol-gel method. Ceramics International, 2018, 44, 3201-3210.	2.3	18
17	A Review of Recent Developments and Advanced Applications of High-Temperature Polymer Electrolyte Membranes for PEM Fuel Cells. Energies, 2021, 14, 5440.	1.6	18
18	Synthesis and Characterization of NiO Nanoâ€Spheres by Templating on Chitosan as a Green Precursor. Journal of the American Ceramic Society, 2016, 99, 3874-3882.	1.9	17

BAHMAN AMINI HORRI

#	Article	IF	CITATIONS
19	Characteristics and performance of urea modified Pt-MWCNTs for electro-oxidation of methanol. Applied Surface Science, 2019, 467-468, 335-344.	3.1	16
20	Green synthesis and characterisation of nanocrystalline NiO-GDC powders with low activation energy for solid oxide fuel cells. Ceramics International, 2021, 47, 32804-32816.	2.3	16
21	Optimised Co-Precipitation synthesis condition for oxalate-derived zirconia nanoparticles. Ceramics International, 2019, 45, 22930-22939.	2.3	15
22	A highly efficient hydrogen generation electrolysis system using alkaline zinc hydroxide solution. International Journal of Hydrogen Energy, 2019, 44, 72-81.	3.8	15
23	A Review on Recent Progress in the Integrated Green Hydrogen Production Processes. Energies, 2022, 15, 1209.	1.6	14
24	Hydrothermal synthesis of carbon microspheres from sucrose with citric acid as a catalyst: physicochemical and structural properties. Journal of Taibah University for Science, 2020, 14, 1042-1050.	1.1	13
25	Synthesis and characterisation of Y2O3 using ammonia oxalate as a precipitant in distillate pack co-precipitation process. Ceramics International, 2018, 44, 18693-18702.	2.3	12
26	Growth of single-walled carbon nanotubes on a Co–Mo–MgO supported catalyst by the CVD of methane in a fixed bed reactor: Model setting and parameter estimation. Solid State Sciences, 2011, 13, 1242-1250.	1.5	11
27	Ionic–gelation synthesis of gadolinium doped ceria (Ce 0.8 Gd 0.2 O 1.90) nanocomposite powder using sodium-alginate. Ceramics International, 2017, 43, 7123-7135.	2.3	10
28	From Laboratory Experiments to Design of a Conveyor-Belt Dryer via Mathematical Modeling. Drying Technology, 2005, 23, 2389-2420.	1.7	9
29	Modeling the Influence of Carbon Spheres on the Porosity of <scp>SOFC</scp> Anode Materials. Journal of the American Ceramic Society, 2012, 95, 1261-1268.	1.9	9
30	Green Synthesis of ZnO Nanoparticles by an Alginate Mediated Ion-Exchange Process and a case study for Photocatalysis of Methylene Blue Dye. Journal of Physics: Conference Series, 2017, 829, 012014.	0.3	9
31	Catalytic Upgrading of a Biogas Model Mixture via Low Temperature DRM Using Multicomponent Catalysts. Topics in Catalysis, 2020, 63, 281-293.	1.3	9
32	An experimental investigation of smart-water wettability alteration in carbonate rocks – oil recovery and temperature effects. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2020, , 1-13.	1.2	9
33	Synthesis and characterisation of nanocrystalline CuO–Fe2O3/GDC anode powders for solid oxide fuel cells. Ceramics International, 2020, 46, 14776-14786.	2.3	8
34	Synthesis and Characterizations of Nickel (II) Oxide Sub-Micro Rods via co-precipitation Methods. IOP Conference Series: Materials Science and Engineering, 2018, 398, 012033.	0.3	7
35	Synthesis and characteristics of nanocrystalline Ni1â^'xCoxO/GDC powder as a methane reforming catalyst for SOFCs. Ceramics International, 2018, 44, 6851-6860.	2.3	5
36	Synthesis and Characterization of Gadolinium-Doped Zirconia as a Potential Electrolyte for Solid Oxide Fuel Cells. Energies, 2022, 15, 2826.	1.6	5

#	Article	IF	CITATIONS
37	Rheological behaviour of NiO/YSZ slurries for drying-free casting. Powder Technology, 2012, 223, 116-122.	2.1	4
38	A benzoate coprecipitation route for synthesizing nanocrystalline GDC powder with lowered sintering temperature. Ceramics International, 2021, 47, 20009-20018.	2.3	4
39	Ceramic Nanocomposites for Solid Oxide Fuel Cells. , 2017, , 157-183.		3
40	Grafted Copolymerized Chitosan and Its Applications as a Green Biopolymer. , 2018, , 285-333.		3
41	Ammonium oxalate-assisted synthesis of Gd2O3 nanopowders. Ceramics International, 2019, 45, 9082-9091.	2.3	3
42	Special Issue "Emerging Materials and Fabrication Methods for Solid Oxide Fuel Cells (SOFCs)― Energies, 2022, 15, 3182.	1.6	2
43	Optimal oxygen concentration strategy through an isothermal oxidative coupling of methane plug flow reactor to obtain a high yield of C2 hydrocarbons. Korean Journal of Chemical Engineering, 2013, 30, 1213-1221.	1.2	1
44	Catalytic Aspects of Fuel Cells: Overview and Insights into Solid Oxide Fuel Cells. RSC Energy and Environment Series, 2020, , 459-494.	0.2	1
45	Gelling synthesis of NiO/YSZ nanocomposite powder for solid oxide fuel cells. Advanced Materials Proceedings, 2021, 2, 813-818.	0.2	1
46	Green Synthesis and Characterization of High-Purity Monodispersed Cupric Oxide (CuO) Nanopowder. Key Engineering Materials, 0, 801, 351-356.	0.4	0