Hsisheng Teng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8495836/publications.pdf Version: 2024-02-01

HSISHENC TENC

#	Article	IF	CITATIONS
1	Lithium battery enhanced by the combination of in-situ generated poly(ionic liquid) systems and TiO2 nanoparticles. Journal of Membrane Science, 2022, 641, 119891.	4.1	13
2	Design of networked solid-state polymer as artificial interlayer and solid polymer electrolyte for lithium metal batteries. Chemical Engineering Journal, 2022, 431, 133442.	6.6	16
3	Efficiency and stability improvements for room light dye-sensitized solar cells in the presence of electrochemically fabricated composite counter electrodes. Journal of Power Sources, 2022, 518, 230781.	4.0	12
4	Ternary-salt gel polymer electrolyte for anode-free lithium metal batteries with an untreated Cu substrate. Journal of Materials Chemistry A, 2022, 10, 4895-4905.	5.2	16
5	Enhanced adsorption on TiO2 photoelectrodes of dye-sensitized solar cells by electrochemical methods dye. Journal of Alloys and Compounds, 2022, 903, 163959.	2.8	8
6	Indoor Dye-Sensitized Solar Cells with Efficiencies Surpassing 26% Using Polymeric Counter Electrodes. ACS Sustainable Chemistry and Engineering, 2022, 10, 2473-2483.	3.2	34
7	Composite electrolyte pastes for preparing sub-module dye sensitized solar cells. Journal of Industrial and Engineering Chemistry, 2022, 107, 383-390.	2.9	2
8	Tandem dye-sensitized solar cells with efficiencies surpassing 33% under dim-light conditions. Chemical Engineering Journal, 2022, 446, 137349.	6.6	13
9	Melem-derived poly(heptazine imide) for effective charge transport and photocatalytic reforming of cellulose into H2 and biochemicals under visible light. Applied Catalysis B: Environmental, 2022, 316, 121601.	10.8	16
10	Postinjection gelation of an electrolyte with high storage permittivity and low loss permittivity for electrochemical capacitors. Journal of Power Sources, 2021, 481, 228869.	4.0	12
11	<i>In situ</i> formation of polymer electrolytes using a dicationic imidazolium cross-linker for high-performance lithium ion batteries. Journal of Materials Chemistry A, 2021, 9, 5796-5806.	5.2	16
12	Biocompatible hole scavenger–assisted graphene oxide dots for photodynamic cancer therapy. Nanoscale, 2021, 13, 8431-8441.	2.8	12
13	Highly stable interface formation in onsite coagulation dual-salt gel electrolyte for lithium-metal batteries. Journal of Materials Chemistry A, 2021, 9, 5675-5684.	5.2	12
14	Nanomedicine-Based Strategies Assisting Photodynamic Therapy for Hypoxic Tumors: State-of-the-Art Approaches and Emerging Trends. Biomedicines, 2021, 9, 137.	1.4	20
15	Photocatalytic Cellulose Reforming for H ₂ and Formate Production by Using Graphene Oxide-Dot Catalysts. ACS Catalysis, 2021, 11, 4955-4967.	5.5	55
16	Quasi-solid-state composite electrolytes with Al2O3 and ZnO nanofillers for dye-sensitized solar cells. Electrochimica Acta, 2021, 380, 137588.	2.6	12
17	Novel Architecture of Indoor Bifacial Dyeâ€Sensitized Solar Cells with Efficiencies Surpassing 25% and Efficiency Ratios Exceeding 95%. Advanced Optical Materials, 2021, 9, 2100936.	3.6	12
18	A scaffold membrane of solid polymer electrolytes for realizing high-stability and dendrite-free lithium-metal batteries. Journal of Materials Chemistry A, 2021, 9, 25408-25417.	5.2	13

#	Article	IF	CITATIONS
19	<i>In Situ</i> Polymerized Electrolytes with Fully Cross-Linked Networks Boosting High Ionic Conductivity and Capacity Retention for Lithium Ion Batteries. ACS Applied Energy Materials, 2021, 4, 14309-14322.	2.5	8
20	Performance Enhancement of Dye-Sensitized Solar Cells by Utilizing Carbon Nanotubes as an Electrolyte-Treating Agent. ACS Sustainable Chemistry and Engineering, 2020, 8, 1102-1111.	3.2	11
21	Free-standing polymer electrolyte for all-solid-state lithium batteries operated at room temperature. Journal of Power Sources, 2020, 449, 227518.	4.0	43
22	Quasi-solid-state dye-sensitized indoor photovoltaics with efficiencies exceeding 25%. Journal of Materials Chemistry A, 2020, 8, 22423-22433.	5.2	24
23	On-site-coagulation gel polymer electrolytes with a high dielectric constant for lithium-ion batteries. Journal of Power Sources, 2020, 480, 228802.	4.0	16
24	Highly efficient indoor light quasi-solid-state dye sensitized solar cells using cobalt polyethylene oxide-based printable electrolytes. Chemical Engineering Journal, 2020, 394, 124954.	6.6	50
25	High-Efficiency Bifacial Dye-Sensitized Solar Cells for Application under Indoor Light Conditions. ACS Applied Materials & Interfaces, 2019, 11, 42780-42789.	4.0	58
26	Mesophase Pitch-Derived Carbons with High Electronic and Ionic Conductivity Levels for Electric Double-Layer Capacitors. ACS Omega, 2019, 4, 16925-16934.	1.6	3
27	A new mechanism for interpreting the effect of TiO2 nanofillers in quasi-solid-state dye-sensitized solar cells. Journal of Power Sources, 2019, 433, 226693.	4.0	5
28	High Li ⁺ transference gel interface between solid-oxide electrolyte and cathode for quasi-solid lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 12244-12252.	5.2	35
29	Photocatalytic reforming of sugar and glucose into H ₂ over functionalized graphene dots. Journal of Materials Chemistry A, 2019, 7, 8384-8393.	5.2	40
30	Highly efficient quasi-solid-state dye-sensitized solar cells prepared by printable electrolytes for room light applications. Chemical Engineering Journal, 2019, 367, 17-24.	6.6	67
31	Highly efficient quasi-solid-state dye-sensitized solar cells using polyethylene oxide (PEO) and poly(methyl methacrylate) (PMMA)-based printable electrolytes. Journal of Materials Chemistry A, 2018, 6, 10085-10094.	5.2	64
32	Minimization of Ion–Solvent Clusters in Gel Electrolytes Containing Graphene Oxide Quantum Dots for Lithiumâ€Ion Batteries. Small, 2018, 14, e1703571.	5.2	43
33	Electronic structure manipulation of graphene dots for effective hydrogen evolution from photocatalytic water decomposition. Nanoscale, 2018, 10, 10721-10730.	2.8	27
34	Graphene Oxide Sponge as Nanofillers in Printable Electrolytes in High-Performance Quasi-Solid-State Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 10955-10964.	4.0	30
35	Oligomerâ€Incorporated Polymeric Layer Framework of Graphitic Carbon Nitride for Effective Photocatalytic Hydrogen Evolution. Particle and Particle Systems Characterization, 2018, 35, 1700221	1.2	10
36	Synergy between quantum confinement and chemical functionality of graphene dots promotes photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2018, 6, 18216-18224.	5.2	10

#	Article	IF	CITATIONS
37	High-performance printable electrolytes for dye-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 9190-9197.	5.2	45
38	Roles of nitrogen functionalities in enhancing the excitation-independent green-color photoluminescence of graphene oxide dots. Nanoscale, 2017, 9, 8256-8265.	2.8	25
39	Highly electrocatalytic carbon black/copper sulfide composite counter electrodes fabricated by a facile method for quantum-dot-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 23146-23157.	5.2	43
40	Solvent-free synthesis of an ionic liquid integrated ether-abundant polymer as a solid electrolyte for flexible electric double-layer capacitors. Journal of Materials Chemistry A, 2017, 5, 19703-19713.	5.2	40
41	Diode-like gel polymer electrolytes for full-cell lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 17476-17481.	5.2	19
42	Elucidating Quantum Confinement in Graphene Oxide Dots Based On Excitation-Wavelength-Independent Photoluminescence. Journal of Physical Chemistry Letters, 2016, 7, 2087-2092.	2.1	143
43	Architecting Nitrogen Functionalities on Graphene Oxide Photocatalysts for Boosting Hydrogen Production in Water Decomposition Process. Advanced Energy Materials, 2016, 6, 1600719.	10.2	75
44	An ether bridge between cations to extend the applicability of ionic liquids in electric double layer capacitors. Journal of Materials Chemistry A, 2016, 4, 19160-19169.	5.2	18
45	Approaching Defect-free Amorphous Silicon Nitride by Plasma-assisted Atomic Beam Deposition for High Performance Gate Dielectric. Scientific Reports, 2016, 6, 28326.	1.6	17
46	Immobilization of Anions on Polymer Matrices for Gel Electrolytes with High Conductivity and Stability in Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 14776-14787.	4.0	61
47	Incorporating nitrogen-doped graphene oxide dots with graphene oxide sheets for stable and effective hydrogen production through photocatalytic water decomposition. Applied Catalysis A: General, 2016, 521, 118-124.	2.2	30
48	Graphene oxide-based nanomaterials for efficient photoenergy conversion. Journal of Materials Chemistry A, 2016, 4, 2014-2048.	5.2	73
49	Synergistic effect of oxygen and nitrogen functionalities for graphene-based quantum dots used in photocatalytic H2 production from water decomposition. Nano Energy, 2015, 12, 476-485.	8.2	133
50	Stability improvement of gel-state dye-sensitized solar cells by utilization the co-solvent effect of propionitrile/acetonitrile and 3-methoxypropionitrile/acetonitrile with poly(acrylonitrile-co-vinyl) Tj ETQq0 0 0 rg	gBT /Qv erlo	ck 20 Tf 50 2
51	Facile simulation of carbon with wide pore size distribution for electric double-layer capacitance based on Helmholtz models. Journal of Materials Chemistry A, 2015, 3, 16535-16543.	5.2	37
52	Synthesis of graphene oxide dots for excitation-wavelength independent photoluminescence at high quantum yields. Journal of Materials Chemistry C, 2015, 3, 4553-4562.	2.7	39
53	Printable electrolytes based on polyacrylonitrile and gamma-butyrolactone for dye-sensitized solar cell application. Journal of Power Sources, 2015, 298, 385-390.	4.0	38
54	Nitrogenâ€Doped Graphene Oxide Quantum Dots as Photocatalysts for Overall Waterâ€Splitting under Visible Light Illumination. Advanced Materials, 2014, 26, 3297-3303.	11.1	749

#	Article	IF	CITATIONS
55	Formation of internal p–n junctions in Ta ₃ N ₅ photoanodes for water splitting. Journal of Materials Chemistry A, 2014, 2, 20570-20577.	5.2	45
56	Design of Poly(Acrylonitrile)-Based Gel Electrolytes for High-Performance Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 19360-19370.	4.0	119
57	Gel electrolytes based on an ether-abundant polymeric framework for high-rate and long-cycle-life lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 10492-10501.	5.2	40
58	Electric double layer capacitors of high volumetric energy based on ionic liquids and hierarchical-pore carbon. Journal of Materials Chemistry A, 2014, 2, 14963-14972.	5.2	40
59	Electrochemical Capacitors Fabricated with Tin Oxide/Graphene Oxide Nanocomposites. Journal of Physical Chemistry C, 2014, 118, 15146-15153.	1.5	55
60	Poly(ethylene oxide)-co-Poly(propylene oxide)-Based Gel Electrolyte with High Ionic Conductivity and Mechanical Integrity for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 8477-8485.	4.0	134
61	Pyrochlore-like K2Ta2O6 synthesized from different methods as efficient photocatalysts for water splitting. Catalysis Science and Technology, 2013, 3, 1798.	2.1	22
62	Photoactive p-type PbS as a counter electrode for quantum dot-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 1155-1162.	5.2	129
63	Roles of graphene oxide in photocatalytic water splitting. Materials Today, 2013, 16, 78-84.	8.3	335
64	Highly efficient gel-state dye-sensitized solar cells prepared using poly(acrylonitrile-co-vinyl acetate) based polymer electrolytes. Physical Chemistry Chemical Physics, 2013, 15, 3640.	1.3	69
65	Tuning the Electronic Structure of Graphite Oxide through Ammonia Treatment for Photocatalytic Generation of H ₂ and O ₂ from Water Splitting. Journal of Physical Chemistry C, 2013, 117, 6516-6524.	1.5	151
66	Electric double layer capacitors based on a composite electrode of activated mesophase pitch and carbon nanotubes. Journal of Materials Chemistry, 2012, 22, 7314.	6.7	78
67	High-performance quantum dot-sensitized solar cells based on sensitization with CuInS2quantum dots/CdS heterostructure. Energy and Environmental Science, 2012, 5, 5315-5324.	15.6	306
68	Pulse Microwave Deposition of Cobalt Oxide Nanoparticles on Graphene Nanosheets as Anode Materials for Lithium Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 15251-15258.	1.5	62
69	Gel Electrolyte Derived from Poly(ethylene glycol) Blending Poly(acrylonitrile) Applicable to Rollâ€ŧoâ€Roll Assembly of Electric Double Layer Capacitors. Advanced Functional Materials, 2012, 22, 4677-4685.	7.8	147
70	Structure and Electron-Conducting Ability of TiO2 Films from Electrophoretic Deposition and Paste-Coating for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 25580-25589.	1.5	39
71	Efficient water splitting over Na1â^'xKxTaO3 photocatalysts with cubic perovskite structure. Journal of Materials Chemistry, 2011, 21, 3824.	6.7	69
72	Electrochemical Capacitors Based on Graphene Oxide Sheets Using Different Aqueous Electrolytes. Journal of Physical Chemistry C, 2011, 115, 12367-12374.	1.5	124

#	Article	IF	CITATIONS
73	CulnS2 quantum dots coated with CdS as high-performance sensitizers for TiO2 electrodes in photoelectrochemical cells. Journal of Materials Chemistry, 2011, 21, 5089.	6.7	146
74	Energy level alignment, electron injection, and charge recombination characteristics in CdS/CdSe cosensitized TiO2 photoelectrode. Applied Physics Letters, 2011, 98, .	1.5	93
75	Preparation of highly efficient gel-state dye-sensitized solar cells using polymer gel electrolytes based on poly(acrylonitrile-co-vinyl acetate). Journal of Materials Chemistry, 2011, 21, 628-632.	6.7	63
76	Visible luminescence properties of (Ga1â^'xZnx)(N1â^'xOx) solid solution (x = 0.22). Journal of Applied Physics, 2011, 109, 073506.	1.1	11
77	Vapor treatment of nanocrystalline WO3 photoanodes for enhanced photoelectrochemical performance in the decomposition of water. Journal of Materials Chemistry, 2011, 21, 19402.	6.7	37
78	In Situ Gelation of Electrolytes for Highly Efficient Gelâ€State Dyeâ€Sensitized Solar Cells. Advanced Materials, 2011, 23, 4199-4204.	11.1	129
79	Graphite Oxide as a Photocatalyst for Hydrogen Production from Water. Advanced Functional Materials, 2010, 20, 2255-2262.	7.8	746
80	CaO Powders from Oyster Shells for Efficient CO ₂ Capture in Multiple Carbonation Cycles. Journal of the American Ceramic Society, 2010, 93, 221-227.	1.9	27
81	Nanostructured Coral-like Carbon as Pt Support for Fuel Cells. Journal of Physical Chemistry C, 2010, 114, 6976-6982.	1.5	22
82	Gallium Oxynitride Photocatalysts Synthesized from Ga(OH) ₃ for Water Splitting under Visible Light Irradiation. Journal of Physical Chemistry C, 2010, 114, 20100-20106.	1.5	62
83	Solution synthesis of high-quality CuInS2 quantum dots as sensitizers for TiO2 photoelectrodes. Journal of Materials Chemistry, 2010, 20, 3656.	6.7	175
84	Structure Characterization and Tuning of Perovskiteâ€Like NaTaO ₃ for Applications in Photoluminescence and Photocatalysis. Journal of the American Ceramic Society, 2009, 92, 460-466.	1.9	88
85	Coordination of Ti ⁴⁺ Sites in Nanocrystalline TiO ₂ Films Used for Photoinduced Electron Conduction: Influence of Nanoparticle Synthesis and Thermal Necking. Journal of the American Ceramic Society, 2009, 92, 888-893.	1.9	23
86	Elucidating the Conductivity-Type Transition Mechanism of p-Type Cu[sub 2]O Films from Electrodeposition. Journal of the Electrochemical Society, 2009, 156, H567.	1.3	59
87	Influence of the Semiconducting Properties of a Current Collector on the Electric Double Layer Formation on Porous Carbon. Journal of Physical Chemistry B, 2005, 109, 10279-10284.	1.2	51
88	Regulation of the Physical Characteristics of Titania Nanotube Aggregates Synthesized from Hydrothermal Treatment. Chemistry of Materials, 2004, 16, 4352-4358.	3.2	369
89	Template Synthesis and Electrochemical Characterization of Nickel-Based Tubule Electrode Arrays. Chemistry of Materials, 2004, 16, 338-342.	3.2	38
90	Synthesis of Ba(Mg _{1/3} Ta _{2/3})O ₃ Microwave Ceramics through a Sol–Gel Route Using Acetate Salts. Journal of the American Ceramic Society, 2004, 87, 2080-2085.	1.9	18

#	Article	IF	CITATIONS
91	Influence of surface oxides on the impedance behavior of carbon-based electrochemical capacitors. Journal of Electroanalytical Chemistry, 2003, 540, 119-127.	1.9	222
92	Influence of the Formaldehyde-to-Phenol Ratio in Resin Synthesis on the Production of Activated Carbons from Phenolâ^'Formaldehyde Resins. Industrial & Engineering Chemistry Research, 2002, 41, 1986-1992.	1.8	20
93	Pore-size effects on activated-carbon capacities for volatile organic compound adsorption. AICHE Journal, 2002, 48, 1804-1810.	1.8	40
94	STUDIES ON THE KINETICS OF NITROUS OXIDE ADSORPTION ON RESIN CHAR. Separation Science and Technology, 2001, 36, 113-124.	1.3	0
95	Catalytic Reduction of NO with NH3over Carbons Impregnated with Cu and Fe. Environmental Science & amp; Technology, 2001, 35, 2369-2374.	4.6	45
96	Langmuir and Dubinin-Radushkevich analyses on equilibrium adsorption of activated carbon fabrics in aqueous solutions. Journal of Chemical Technology and Biotechnology, 2000, 75, 1066-1072.	1.6	57
97	Production of Activated Carbons from Pyrolysis of Waste Tires Impregnated with Potassium Hydroxide. Journal of the Air and Waste Management Association, 2000, 50, 1940-1946.	0.9	81
98	Influence of Oxidation on the Preparation of Porous Carbons from Phenolâ^'Formaldehyde Resins with KOH Activation. Industrial & Engineering Chemistry Research, 2000, 39, 673-678.	1.8	26
99	Liquid-phase adsorption of phenol by activated carbons prepared from bituminous coals with different oxygen contents. Journal of Chemical Technology and Biotechnology, 1999, 74, 123-130.	1.6	32
100	Activation Energy for Oxygen Chemisorption on Carbon at Low Temperatures. Industrial & Engineering Chemistry Research, 1999, 38, 292-297.	1.8	126
101	High-Porosity Carbons Prepared from Bituminous Coal with Potassium Hydroxide Activation. Industrial & Engineering Chemistry Research, 1999, 38, 2947-2953.	1.8	79
102	Influence of Surface Characteristics on Liquid-Phase Adsorption of Phenol by Activated Carbons Prepared from Bituminous Coal. Industrial & Engineering Chemistry Research, 1998, 37, 3618-3624.	1.8	131
103	Preparation of Activated Carbons from Bituminous Coals with Zinc Chloride Activation. Industrial & Engineering Chemistry Research, 1998, 37, 58-65.	1.8	72
104	Thermogravimetric Studies on the Kinetics of Rice Hull Pyrolysis and the Influence of Water Treatment. Industrial & Engineering Chemistry Research, 1998, 37, 3806-3811.	1.8	146
105	Thermogravimetric Analysis on Global Mass Loss Kinetics of Rice Hull Pyrolysis. Industrial & Engineering Chemistry Research, 1997, 36, 3974-3977.	1.8	68