Najeeb Ullah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/849573/publications.pdf

Version: 2024-02-01

66 papers

3,282 citations

236925 25 h-index 54 g-index

70 all docs

70 docs citations

times ranked

70

3494 citing authors

#	Article	IF	CITATIONS
1	Phytohormones and plant responses to salinity stress: a review. Plant Growth Regulation, 2015, 75, 391-404.	3.4	566
2	Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. Journal of Hazardous Materials, 2011, 186, 565-574.	12.4	232
3	Arsenic toxicity in plants: Cellular and molecular mechanisms of its transport and metabolism. Environmental and Experimental Botany, 2016, 132, 42-52.	4.2	213
4	Citric acid assisted phytoremediation of copper by Brassica napus L Ecotoxicology and Environmental Safety, 2015, 120, 310-317.	6.0	191
5	Citric acid improves lead (pb) phytoextraction in brassica napus L. by mitigating pb-induced morphological and biochemical damages. Ecotoxicology and Environmental Safety, 2014, 109, 38-47.	6.0	145
6	Citric acid enhances the phytoextraction of manganese and plant growth by alleviating the ultrastructural damages in Juncus effusus L Journal of Hazardous Materials, 2009, 170, 1156-1163.	12.4	129
7	Coping with drought: stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biological Research, 2018, 51, 47.	3.4	126
8	Salinity Stress in Wheat (Triticum aestivum L.) in the Changing Climate: Adaptation and Management Strategies. Frontiers in Agronomy, 2021, 3, .	3.3	117
9	Cadmium-induced functional and ultrastructural alterations in roots of two transgenic cotton cultivars. Journal of Hazardous Materials, 2009, 161, 463-473.	12.4	116
10	Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage. Environmental Science and Pollution Research, 2015, 22, 3441-3450.	5.3	112
11	Planting density and sowing date strongly influence growth and lint yield of cotton crops. Field Crops Research, 2017, 209, 129-135.	5.1	102
12	Consequences of waterlogging in cotton and opportunities for mitigation of yield losses. AoB PLANTS, 2015, 7, plv080.	2.3	78
13	Calcium invigorates the cadmium-stressed Brassica napus L. plants by strengthening their photosynthetic system. Environmental Science and Pollution Research, 2011, 18, 1478-1486.	5.3	76
14	Enhancing the lead phytostabilization in wetland plant Juncus effusus L. through somaclonal manipulation and EDTA enrichment. Arabian Journal of Chemistry, 2017, 10, S3310-S3317.	4.9	70
15	Cadmium-induced ultramorphological and physiological changes in leaves of two transgenic cotton cultivars and their wild relative. Journal of Hazardous Materials, 2009, 168, 614-625.	12.4	69
16	Lead Toxicity in Cereals: Mechanistic Insight Into Toxicity, Mode of Action, and Management. Frontiers in Plant Science, 2020, 11, 587785.	3.6	64
17	Exogenously applied growth regulators protect the cotton crop from heat-induced injury by modulating plant defense mechanism. Scientific Reports, 2018, 8, 17086.	3.3	58
18	Aminoethoxyvinylglycine (AVG) ameliorates waterlogging-induced damage in cotton by inhibiting ethylene synthesis and sustaining photosynthetic capacity. Plant Growth Regulation, 2015, 76, 83-98.	3.4	54

#	Article	IF	Citations
19	Role of mineral nutrition in alleviation of heat stress in cotton plants grown in glasshouse and field conditions. Scientific Reports, 2019, 9, 13022.	3.3	54
20	Physiological and biochemical mechanisms of silicon-induced copper stress tolerance in cotton (Gossypium hirsutum L.). Acta Physiologiae Plantarum, 2016, 38, 1.	2.1	50
21	Correlation studies on nitrogen for sunflower crop across the agroclimatic variability. Environmental Science and Pollution Research, 2016, 23, 3658-3670.	5.3	42
22	Pretreatment with salicylic acid and ascorbic acid significantly mitigate oxidative stress induced by copper in cotton genotypes. Environmental Science and Pollution Research, 2015, 22, 9922-9931.	5.3	40
23	Haploid and Doubled Haploid Technology. Advances in Botanical Research, 2007, , 181-216.	1.1	36
24	Sesame., 2016,, 135-147.		36
25	Insights on the responses of Brassica napus cultivars against the cobalt-stress as revealed by carbon assimilation, anatomical changes and secondary metabolites. Environmental and Experimental Botany, 2018, 156, 183-196.	4.2	32
26	Pollen development in cotton (<scp><i>Gossypium hirsutum</i></scp>) is highly sensitive to heat exposure during the tetrad stage. Plant, Cell and Environment, 2021, 44, 2150-2166.	5.7	29
27	Nitric oxide protects carbon assimilation process of watermelon from boron-induced oxidative injury. Plant Physiology and Biochemistry, 2017, 111, 166-173.	5.8	27
28	Induction of tetraploidy in Juncus effusus by colchicine. Biologia Plantarum, 2010, 54, 659-663.	1.9	26
29	Synergistic effects of EDDS and ALA on phytoextraction of cadmium as revealed by biochemical and ultrastructural changes in sunflower (Helianthus annuus L.) tissues. Journal of Hazardous Materials, 2021, 407, 124764.	12.4	26
30	Hydrogen peroxide reduces heatâ€induced yield losses in cotton (<i><scp>G</scp>ossypium hirsutum) Tj ETQq0 2017, 203, 429-441.</i>	0 0 0 rgBT _{3.5}	/Overlock 10 25
31	WHEAT (TRITICUM AESTIVUM L.) PRODUCTION UNDER DROUGHT AND HEAT STRESS – ADVERSE EFFECTS, MECHANISMS AND MITIGATION: A REVIEW. Applied Ecology and Environmental Research, 2019, 17, .	0.5	22
32	Mitigation of Cadmium Induced Oxidative Stress by Using Organic Amendments to Improve the Growth and Yield of Mash Beans [Vigna mungo (L.)]. Agronomy, 2021, 11, 2152.	3.0	22
33	Biochar and Selenium Nanoparticles Induce Water Transporter Genes for Sustaining Carbon Assimilation and Grain Production in Salt-Stressed Wheat. Journal of Plant Growth Regulation, 2023, 42, 1522-1543.	5.1	22
34	Low Incident Light Combined with Partial Waterlogging Impairs Photosynthesis and Imposes a Yield Penalty in Cotton. Journal of Agronomy and Crop Science, 2016, 202, 331-341.	3.5	20
35	Genome-wide investigation and expression analysis of membrane-bound fatty acid desaturase genes under different biotic and abiotic stresses in sunflower (Helianthus annuus L.). International Journal of Biological Macromolecules, 2021, 175, 188-198.	7.5	18
36	Insights into the plateau adaptation of Salvia castanea by comparative genomic and WGCNA analyses. Journal of Advanced Research, 2022, 42, 221-235.	9.5	18

#	Article	IF	Citations
37	Development of an efficient tissue culture protocol for callus formation and plant regeneration of wetland species Juncus effusus L In Vitro Cellular and Developmental Biology - Plant, 2009, 45, 610-618.	2.1	16
38	Post-Anthesis Heat Influences Grain Yield, Physical and Nutritional Quality in Wheat: A Review. Agriculture (Switzerland), 2022, 12, 886.	3.1	16
39	Protecting cotton crops under elevated CO2 from waterlogging by managing ethylene. Functional Plant Biology, 2018, 45, 340.	2.1	13
40	Planting Density Induced Changes in Cotton Biomass Yield, Fiber Quality, and Phosphorus Distribution under Beta Growth Model. Agronomy, 2019, 9, 500.	3.0	12
41	Ultraviolet-C mediated physiological and ultrastructural alterations in Juncus effusus L. shoots. Acta Physiologiae Plantarum, 2011, 33, 481-488.	2.1	11
42	Soil Contamination with Metals. , 2015, , 37-61.		11
43	In Vitro Mutagenesis and Genetic Improvement. , 2012, , 151-173.		10
44	Improved lentil production by utilizing genetic variability in response to phosphorus fertilization. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2010, 60, 485-493.	0.6	9
45	Endogenous Ethylene Concentration Is Not a Major Determinant of Fruit Abscission in Heat-Stressed Cotton (Gossypium hirsutum L.). Frontiers in Plant Science, 2017, 8, 1615.	3.6	9
46	Detection of major weather patterns reduces number of simulations in climate impact studies. Journal of Agronomy and Crop Science, 2020, 206, 376-389.	3.5	9
47	Editorial: Global Food and Nutrition Security Under Changing Climates. Frontiers in Agronomy, 2022, 3, .	3.3	9
48	Separation of Organic and Inorganic Compounds for Specific Applications. Journal of Chemistry, 2015, 2015, 1-3.	1.9	8
49	Waterâ€saving cultivation plus super rice hybrid genotype improves water productivity and yield. Agronomy Journal, 2020, 112, 1764-1777.	1.8	8
50	Sesame. , 2012, , 131-145.		7
51	<i>In Vitro</i> Cadmium-Induced Alterations in Growth and Oxidative Metabolism of Upland Cotton (<i>Gossypium hirsutum</i> L.). Scientific World Journal, The, 2014, 2014, 1-10.	2.1	7
52	Role of Mineral Nutrients in Plant Growth Under Extreme Temperatures., 2018,, 499-524.		6
53	Inducing waterlogging tolerance in cotton via an anti-ethylene agent aminoethoxyvinylglycine application. Archives of Agronomy and Soil Science, 0, , 1 - 11 .	2.6	5
54	Adaptation of Crops to Warmer Climates: Morphological and Physiological Mechanisms. , 2019, , 27-50.		5

#	Article	IF	CITATIONS
55	Leaf nitrogen metabolism during reproductive phase is crucial for sustaining lint yield of densely populated cotton genotypes. Agronomy Journal, 2020, 112, 4031-4044.	1.8	5
56	Carbohydrate Assimilation and Translocation Regulate Grain Yield Formation in Wheat Crops (Triticum aestivum L.) under Post-Flowering Waterlogging. Agronomy, 2021, 11, 2209.	3.0	5
57	Overcoming Reproductive Compromise Under Heat Stress in Wheat: Physiological and Genetic Regulation, and Breeding Strategy. Frontiers in Plant Science, 2022, 13, .	3.6	5
58	Cotton growth and yield dynamics across canopy layers in response to soil waterlogging. Australian Journal of Crop Science, 2016, 10, 1170-1181.	0.3	4
59	Effects of ZJ0273 on barley and growth recovery of herbicide-stressed seedlings through application of branched-chain amino acids. Journal of Zhejiang University: Science B, 2019, 20, 71-83.	2.8	4
60	Increasing Heat Tolerance in Wheat to Counteract Recent and Projected Increases in Heat Stress. Proceedings (mdpi), 2020, 36, .	0.2	4
61	Adverse Effect of Drought on Quality of Major Cereal Crops: Implications and Their Possible Mitigation Strategies., 2020,, 635-658.		4
62	5-Aminolevulinic acid could enhance the salinity tolerance by alleviating oxidative damages in Salvia miltiorrhiza. Food Science and Technology, 0, 42, .	1.7	4
63	Contribution of climate models and APSIM phenological parameters to uncertainties in spring wheat simulations: Application of SUFIâ€2 algorithm in northeast Australia. Journal of Agronomy and Crop Science, 2022, 208, 225-242.	3.5	4
64	Rendering Multivariate Statistical Models for Genetic Diversity Assessment in A-Genome Diploid Wheat Population. Agronomy, 2021, 11, 2339.	3.0	3
65	Analysis on Heat Characteristics for Summer Maize Cropping in a Semi-Arid Region. Agronomy, 2022, 12, 1435.	3.0	3

Understanding of the Interactive Effect of Waterlogging and Shade on Cotton (Gossypium hirsutum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf