Xing Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8495622/publications.pdf

Version: 2024-02-01

		201674	182427
80	2,859	27	51
papers	citations	h-index	g-index
80	80	80	2658
00	00	80	3030
all docs	docs citations	times ranked	citing authors
80 all docs	80 docs citations	80 times ranked	3658 citing authors

#	Article	IF	Citations
1	Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries. Joule, 2018, 2, 110-124.	24.0	280
2	Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor. Carbon, 2018, 129, 236-244.	10.3	244
3	Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ . Sustainable Energy and Fuels, 2018, 2, 413-421.	4.9	135
4	In situ catalytic growth 3D multi-layers graphene sheets coated nano-silicon anode for high performance lithium-ion batteries. Chemical Engineering Journal, 2019, 356, 895-903.	12.7	131
5	Graphene-like Vanadium Oxygen Hydrate (VOH) Nanosheets Intercalated and Exfoliated by Polyaniline (PANI) for Aqueous Zinc-lon Batteries (ZIBs). ACS Applied Materials & Samp; Interfaces, 2020, 12, 31564-31574.	8.0	126
6	Dendriteâ€Free and Performanceâ€Enhanced Lithium Metal Batteries through Optimizing Solvent Compositions and Adding Combinational Additives. Advanced Energy Materials, 2018, 8, 1703022.	19.5	123
7	Effects of Imide–Orthoborate Dual-Salt Mixtures in Organic Carbonate Electrolytes on the Stability of Lithium Metal Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 2469-2479.	8.0	110
8	Fundamental Insight into Zr Modification of Li- and Mn-Rich Cathodes: Combined Transmission Electron Microscopy and Electrochemical Impedance Spectroscopy Study. Chemistry of Materials, 2018, 30, 2566-2573.	6.7	106
9	Synthesis and electrochemical performance of Li2FeSiO4/carbon/carbon nano-tubes for lithium ion battery. Electrochimica Acta, 2010, 55, 7362-7366.	5.2	95
10	AlF3 modification to suppress the gas generation of Li4Ti5O12 anode battery. Electrochimica Acta, 2014, 139, 104-110.	5.2	77
11	One dimensional and coaxial polyaniline@tin dioxide@multi-wall carbon nanotube as advanced conductive additive free anode for lithium ion battery. Chemical Engineering Journal, 2018, 334, 162-171.	12.7	63
12	SnS Nanosheets Confined Growth by S and N Codoped Graphene with Enhanced Pseudocapacitance for Sodium-Ion Capacitors. ACS Applied Materials & Sodium-Ion Capacitors. A	8.0	63
13	Amorphous SnSe quantum dots anchoring on graphene as high performance anodes for battery/capacitor sodium ion storage. Journal of Power Sources, 2020, 469, 228414.	7.8	63
14	Scalable preparation of porous micron-SnO2/C composites as high performance anode material for lithium ion battery. Journal of Power Sources, 2016, 309, 238-244.	7.8	61
15	Facile electrostatic self-assembly of silicon/reduced graphene oxide porous composite by silica assist as high performance anode for Li-ion battery. Applied Surface Science, 2018, 456, 379-389.	6.1	58
16	A high-performance and environment-friendly gel polymer electrolyte for lithium ion battery based on composited lignin membrane. Journal of Solid State Electrochemistry, 2018, 22, 807-816.	2.5	56
17	Stable Lithium Sulfur Battery Based on In Situ Electrocatalytically Formed Li ₂ S on Metallic MoS ₂ –Carbon Cloth Support. Small Methods, 2020, 4, 2000353.	8.6	49
18	In-situ carbon coating to enhance the rate capability of the Li4Ti5O12 anode material and suppress the electrolyte reduction decomposition on the electrode. Electrochimica Acta, 2016, 190, 69-75.	5.2	48

#	Article	IF	Citations
19	A functional SrF ₂ coated separator enabling a robust and dendrite-free solid electrolyte interphase on a lithium metal anode. Journal of Materials Chemistry A, 2019, 7, 21349-21361.	10.3	47
20	Enhanced Electrochemical Performance of Zrâ€Modified Layered LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Cathode Material for Lithiumâ€lon Batteries. ChemElectroChem, 2016, 3, 130-137.	3.4	46
21	Carbon nanotube-graphene nanosheet conductive framework supported SnO2 aerogel as a high performance anode for lithium ion battery. Electrochimica Acta, 2017, 240, 7-15.	5.2	41
22	Liâ€Rich Li[Li _{1/6} Fe _{1/6} Ni _{1/6} Mn _{1/2}]O ₂ (LFNMO) Cathodes: Atomic Scale Insight on the Mechanisms of Cycling Decay and of the Improvement due to Cobalt Phosphate Surface Modification. Small, 2018, 14, e1802570.	10.0	41
23	Improved rate capability of a LiNi _{1/3} O ₂ /CNT/graphene hybrid material for Li-ion batteries. RSC Advances, 2017, 7, 24359-24367.	3.6	40
24	A novel spherically porous Zr-doped spinel lithium titanate (Li4Ti5â^'xZrxO12) for high rate lithium ion batteries. Journal of Alloys and Compounds, 2014, 588, 17-24.	5.5	35
25	Pulsed electrochemical fabrication of graphene/polypyrrole composite gel films for high performance and flexible supercapacitors. Electrochimica Acta, 2020, 361, 137036.	5.2	34
26	Self-assembly encapsulation of Si in N-doped reduced graphene oxide for use as a lithium ion battery anode with significantly enhanced electrochemical performance. Sustainable Energy and Fuels, 2019, 3, 1427-1438.	4.9	32
27	Stability of polymeric separators in lithium metal batteries in a low voltage environment. Journal of Materials Chemistry A, 2018, 6, 5006-5015.	10.3	31
28	Sulfite modified and ammonium ion intercalated vanadium hydrate with enhanced redox kinetics for aqueous zinc ion batteries. Journal of Power Sources, 2021, 496, 229832.	7.8	31
29	An Ecofriendly Gel Polymer Electrolyte Based on Natural Lignocellulose with Ultrahigh Electrolyte Uptake and Excellent Ionic Conductivity for Alkaline Supercapacitors. ACS Applied Energy Materials, 2019, 2, 6031-6042.	5.1	28
30	Optimal synthetic conditions for a novel and high performance Ni-rich cathode material of LiNi $<$ sub $>$ 0.68 $<$ /sub $>$ Co $<$ sub $>$ 0.10 $<$ /sub $>$ Mn $<$ sub $>$ 0.22 $<$ /sub $>$ O $<$ sub $>$ 2 $<$ /sub $>$. Sustainable Energy and Fuels, 2018, 2, 1772-1780.	4.9	27
31	Gel polymer electrolyte with high performances based on polyacrylonitrile composite natural polymer of lignocellulose in lithium ion battery. Journal of Materials Science, 2020, 55, 12249-12263.	3.7	25
32	A novel Li 4 Ti 5 O 12 /graphene/carbon nano-tubes hybrid material for high rate lithium ion batteries. Materials Letters, 2014, 133, 289-292.	2.6	23
33	Nano tin dioxide anchored onto carbon nanotube/graphene skeleton as anode material with superior lithium-ion storage capability. Journal of Electroanalytical Chemistry, 2018, 815, 30-39.	3.8	23
34	Yeast Template-Derived Multielectron Reaction NASICON Structure Na ₃ MnTi(PO ₄) ₃ for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Diterfaces, 2021, 13, 58585-58595.	8.0	23
35	Stabilize lithium metal anode through constructing a lithiophilic viscoelastic interface based on hydroxypropyl methyl cellulose. Chemical Engineering Journal, 2020, 399, 125687.	12.7	22
36	SnO ₂ /Sn Nanoparticles Embedded in an Ordered, Porous Carbon Framework for Highâ∈Performance Lithiumâ∈lon Battery Anodes. ChemElectroChem, 2017, 4, 345-352.	3.4	21

#	Article	IF	CITATIONS
37	Natural Biomass Hydrogel Based on Cotton Fibers/PVA for Acid Supercapacitors. ACS Applied Energy Materials, 2021, 4, 9144-9153.	5.1	21
38	Highâ€Performance Gel Polymer Electrolyte Based on Chitosan–Lignocellulose for Lithiumâ€lon Batteries. ChemElectroChem, 2020, 7, 1213-1224.	3.4	20
39	Enhanced electrochemical performance of SrF2-modified Li4Ti5O12 composite anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 693, 61-69.	5.5	19
40	Polyhedral oligomeric silsesquioxane containing gel polymer electrolyte based on a PMMA matrix. RSC Advances, 2015, 5, 45908-45918.	3.6	18
41	Dual Carbonaceous Materials Synergetic Protection Silicon as a High-Performance Free-Standing Anode for Lithium-Ion Battery. Nanomaterials, 2019, 9, 650.	4.1	18
42	Effects of Solvent Composition on Liquid Range, Glass Transition, and Conductivity of Electrolytes of a (Li, Cs)PF ₆ Salt in EC-PC-EMC Solvents. Journal of Physical Chemistry C, 2017, 121, 11178-11183.	3.1	17
43	Atomic scale insight into the fundamental mechanism of Mn doped LiFePO ₄ . Sustainable Energy and Fuels, 2020, 4, 2741-2751.	4.9	17
44	First Atomic-Scale Insight into Degradation in Lithium Iron Phosphate Cathodes by Transmission Electron Microscopy. Journal of Physical Chemistry Letters, 2020, 11, 4608-4617.	4.6	16
45	An Acidâ€Resistant Gel Polymer Electrolyte Based on Lignocellulose of Natural Biomass for Supercapacitors. Energy Technology, 2020, 8, 2000009.	3.8	15
46	Novel gel polymer electrolyte based on matrix of PMMA modified with polyhedral oligomeric silsesquioxane. Journal of Solid State Electrochemistry, 2017, 21, 2291-2299.	2.5	14
47	A novel polyacrylonitrile-based porous structure gel polymer electrolyte composited by incorporating polyhedral oligomeric silsesquioxane by phase inversion method. Journal of Solid State Electrochemistry, 2018, 22, 1771-1783.	2.5	14
48	An optimized 3D polymer alloy interface for durability and safety for Li metal batteries. Chemical Engineering Journal, 2021, 420, 130002.	12.7	14
49	Heterointerface synergistic Na+ storage fundamental mechanism for CoSeO3 playing as anode for sodium ion batteries/capacitors. Chemical Engineering Journal, 2022, 433, 134567.	12.7	14
50	Self-supporting lithium titanate nanorod/carbon nanotube/reduced graphene oxide flexible electrode for high performance hybrid lithium-ion capacitor. Journal of Alloys and Compounds, 2019, 790, 1157-1166.	5.5	13
51	A new environmentally friendly gel polymer electrolyte based on cotton-PVA composited membrane for alkaline supercapacitors with increased operating voltage. Journal of Materials Science, 2021, 56, 11027-11043.	3.7	13
52	Polyhedral oligomeric silsesquioxane-modified gel polymer electrolyte based on matrix of poly(methyl methacrylate-maleic anhydride). Journal of Solid State Electrochemistry, 2017, 21, 849-857.	2.5	12
53	A novel porous gel polymer electrolyte based on poly(acrylonitrile–maleic anhydride) composite by polyhedral oligomeric silsesquioxane for lithium-ion batteries. Journal of Applied Electrochemistry, 2019, 49, 1167-1179.	2.9	12
54	Preparation and electrochemical properties of Li4Ti5O12/Ti4O7 composite for lithium-ion batteries. lonics, 2018, 24, 379-384.	2.4	10

#	Article	IF	CITATIONS
55	Optimized synthesis condition and mechanism for novel spherical cobalt-free 0.6Li2MnO3·0.4Li[Fe1/3Ni1/3Mn1/3]O2 cathode. Journal of Power Sources, 2021, 487, 229410.	7.8	10
56	Manganese hexacyanoferrate anchoring MnO2 with enhanced stability for aqueous zinc-ion batteries. Journal of Alloys and Compounds, 2022, 903, 163833.	5 . 5	10
57	Hierarchical Microspheres of Aggregated Silicon Nanoparticles with Nanometre Gaps as the Anode for Lithiumâ€lon Batteries with Excellent Cycling Stability. ChemElectroChem, 2019, 6, 1139-1148.	3.4	8
58	A novel YPO 4 -coated Li 4 Ti 5 O 12 composite anode material with suppressed interfacial reactions for lithium ion batteries. Materials Letters, 2017, 200, 71-74.	2.6	7
59	New nonflammable tributyl phosphate based localized high concentration electrolytes for lithium metal batteries. Sustainable Energy and Fuels, 2022, 6, 2198-2206.	4.9	7
60	Novel Sulfur-Containing Polymeric Cathode Material Prepared via an Inverse Vulcanization Method for Advanced Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2022, 5, 7617-7626.	5.1	7
61	A gel polymer electrolyte based on a novel synthesized matrix of a self-doped polymer of h-poly(methyl methacrylate-vinyl trismethoxy silane). RSC Advances, 2015, 5, 41707-41715.	3.6	6
62	Gel polymer electrolyte combined lignocellulose with sodium alginate in lithium-ion battery. Functional Materials Letters, 2022, 15, .	1.2	6
63	Preparation of a novel polymeric adsorbent and its adsorption of phenol in aqueous solution. Desalination and Water Treatment, 2016, 57, 13295-13306.	1.0	5
64	Atomic layer deposition of Al2O3 on LiNi0.68Co0.10Mn0.22O2 for enhanced electrochemical performance. Materials Letters, 2020, 271, 127771.	2.6	5
65	Enhanced electrochemical performance of Si/C electrode through surface modification using SrF2 particle. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1621-1628.	4.9	5
66	Hydroxypropyl methyl cellulose-based gel polymer electrolyte provides a fast migration channel for sodium-ion batteries. Journal of Materials Science, 2022, 57, 4311-4322.	3.7	5
67	Mn ²⁺ Ions Capture and Uniform Composite Electrodes with PEI Aqueous Binder for Advanced LiMn ₂ O ₄ -Based Battery. ACS Applied Materials & Interfaces, 2022, 14, 14226-14234.	8.0	5
68	Li ₄ Ti ₅ O ₁₂ /Ti ₄ O ₇ /carbon nanotubes composite anode material for lithiumâ€ion batteries. Micro and Nano Letters, 2018, 13, 915-918.	1.3	4
69	Gradient valence-distributed vanadium oxygen hydrate hybrid induces high performance aqueous zinc-ion batteries. Materials Chemistry Frontiers, 2021, 5, 7518-7528.	5.9	4
70	Gel polymer electrolyte with high performances based on poly(methyl methacrylate) composited with hydroxypropyl methyl cellulose by phase inversion method for lithium-ion batteries. Functional Materials Letters, 0, , 2151017.	1.2	4
71	Insight into the microscopic morphology and electrochemical performance correlation mechanism upon calcination at different temperatures of a novel spherical cobalt-free 0.6Li2MnO3·0.4Li[Fe1/3Ni1/3Mn1/3]O2 cathode. Sustainable Energy and Fuels, 0, , .	4.9	4
72	A Composited Interlayer with Dualâ€Effect Trap and Repulsion for Inhibition of Polysulfides in Lithiumâ€Sulfur Batteries. ChemElectroChem, 2020, 7, 2190-2198.	3.4	3

XING LI

#	Article	IF	CITATION
73	Facilitating the redox conversion of CoSe ₂ nanorods by Ti ₃ C ₂ Ti _{3 for sodium-ion batteries. Sustainable Energy and Fuels, 2021, 5, 6381-6391.}	4.9	3
74	In situ enhance lithium polysulfides redox kinetics by carbon cloth/MoO3 self-standing electrode for lithium–sulfur battery. Journal of Materials Science, 2022, 57, 10003-10016.	3.7	3
75	Fundamental mechanism revealed for lithium deficiencies engineering in a new spherical Li-Rich Mn-based layered Li1.23Mn0.46Ni0.246Co0.046Al0.015O2 cathode. Electrochimica Acta, 2022, 418, 140379.	5.2	3
76	TinO2nâ^'1-Coated Li4Ti5O12 Composite Anode Material for Lithium-Ion Batteries. Jom, 2018, 70, 1383-1386.	1.9	2
77	Performance enhanced high-nickel lithium metal batteries through stable cathode and anode electrolyte interfaces. Sustainable Energy and Fuels, 2020, 4, 2875-2883.	4.9	2
78	Newly comprehensive understanding of Li ₂ S ₈ as additive in liquid electrolyte for lithium-sulfur battery through reconstructing the cathode and SEI. Functional Materials Letters, 2021, 14, 2151001.	1.2	2
79	Two-Step Rapid Synthesis of MnO@C Nanoparticle as a High-Performance Anode for Lithium-Ion Batteries. Jom, 2022, 74, 1849-1858.	1.9	2
80	Gel polymer electrolytes with high performance based on a polyvinylidene fluoride composite with eco-friendly lignocellulose for lithium-ion batteries. New Journal of Chemistry, 2022, 46, 8010-8021.	2.8	2