Jinpeng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8495591/publications.pdf Version: 2024-02-01

	109137	182168
3,594	35	51
citations	h-index	g-index
117	117	2699
docs citations	times ranked	citing authors
	3,594 citations 117 docs citations	3,594 35 citations h-index 117 117 docs citations 117 times ranked

LINDENC WANC

#	Article	IF	CITATIONS
1	Effect of pullulan on the water distribution, microstructure and textural properties of rice starch gels during cold storage. Food Chemistry, 2017, 214, 702-709.	4.2	157
2	Measurement and characterization of external oil in the fried waxy maize starch granules using ATR-FTIR and XRD. Food Chemistry, 2018, 242, 131-138.	4.2	112
3	Effect of frying on the pasting and rheological properties of normal maize starch. Food Hydrocolloids, 2018, 77, 85-95.	5.6	101
4	Impact of mild acid hydrolysis on structure and digestion properties of waxy maize starch. Food Chemistry, 2011, 126, 506-513.	4.2	100
5	Rapid, accurate, and simultaneous measurement of water and oil contents in the fried starchy system using low-field NMR. Food Chemistry, 2017, 233, 525-529.	4.2	97
6	Influence of β-cyclodextrin on the short-term retrogradation of rice starch. Food Chemistry, 2009, 116, 54-58.	4.2	84
7	Effect of pullulan on the digestible, crystalline and morphological characteristics of rice starch. Food Hydrocolloids, 2017, 63, 383-390.	5.6	82
8	Effect of dietary fibers on the structure and digestibility of fried potato starch: A comparison of pullulan and pectin. Carbohydrate Polymers, 2019, 215, 47-57.	5.1	81
9	Effect of pHs on dispersity of maize starch nanocrystals in aqueous medium. Food Hydrocolloids, 2014, 36, 369-373.	5.6	77
10	Impact of germination on nutritional and physicochemical properties of adlay seed (Coixlachryma-jobi) Tj ETQq0	0 0 rgBT / 4.2	Overlock 10 7
11	Resveratrol-loaded core-shell nanostructured delivery systems: Cyclodextrin-based metal-organic nanocapsules prepared by ionic gelation. Food Chemistry, 2020, 317, 126328.	4.2	67
12	A review of green techniques for the synthesis of size-controlled starch-based nanoparticles and their applications as nanodelivery systems. Trends in Food Science and Technology, 2019, 92, 138-151.	7.8	66
13	Comprehensive investigation and comparison of surface microstructure of fractionated potato starches. Food Hydrocolloids, 2019, 89, 11-19.	5.6	62
14	Novel Approach with Controlled Nucleation and Growth for Green Synthesis of Size-Controlled Cyclodextrin-Based Metal–Organic Frameworks Based on Short-Chain Starch Nanoparticles. Journal of Agricultural and Food Chemistry, 2018, 66, 9785-9793.	2.4	58
15	Research progress on the brewing techniques of new-type rice wine. Food Chemistry, 2017, 215, 508-515.	4.2	57
16	Advances in conversion of natural biopolymers: A reactive extrusion (REX)–enzyme-combined strategy for starch/protein-based food processing. Trends in Food Science and Technology, 2020, 99, 167-180.	7.8	56
17	Impact of frying conditions on hierarchical structures and oil absorption of normal maize starch. Food Hydrocolloids, 2019, 97, 105231.	5.6	52

#	Article	IF	CITATIONS
19	Impact of granule size on microstructural changes and oil absorption of potato starch during frying. Food Hydrocolloids, 2019, 94, 428-438.	5.6	51
20	Effects of Degree of Polymerization on Size, Crystal Structure, and Digestibility of Debranched Starch Nanoparticles and Their Enhanced Antioxidant and Antibacterial Activities of Curcumin. ACS Sustainable Chemistry and Engineering, 2019, 7, 8499-8511.	3.2	50
21	Ultrasound assisted annealing production of resistant starches type 3 from fractionated debranched starch: Structural characterization and in-vitro digestibility. Food Hydrocolloids, 2021, 110, 106141.	5.6	50
22	Advances in research on interactions between polyphenols and biology-based nano-delivery systems and their applications in improving the bioavailability of polyphenols. Trends in Food Science and Technology, 2021, 116, 492-500.	7.8	48
23	Green Synthesis of Cyclodextrin-Based Metal–Organic Frameworks through the Seed-Mediated Method for the Encapsulation of Hydrophobic Molecules. Journal of Agricultural and Food Chemistry, 2018, 66, 4244-4250.	2.4	46
24	Characterization and Mechanisms of Novel Emulsions and Nanoemulsion Gels Stabilized by Edible Cyclodextrin-Based Metal–Organic Frameworks and Glycyrrhizic Acid. Journal of Agricultural and Food Chemistry, 2019, 67, 391-398.	2.4	46
25	Supramolecular hydrogel formation between chitosan and hydroxypropyl β-cyclodextrin via Diels-Alder reaction and its drug delivery. International Journal of Biological Macromolecules, 2018, 114, 381-391.	3.6	44
26	Impact of High-Shear Extrusion Combined With Enzymatic Hydrolysis on Rice Properties and Chinese Rice Wine Fermentation. Food and Bioprocess Technology, 2015, 8, 589-604.	2.6	43
27	Advances in research on preparation, characterization, interaction with proteins, digestion and delivery systems of starch-based nanoparticles. International Journal of Biological Macromolecules, 2020, 152, 117-125.	3.6	43
28	A novel method for pullulanase immobilized onto magnetic chitosan/Fe3O4 composite nanoparticles by in situ preparation and evaluation of the enzyme stability. Journal of Molecular Catalysis B: Enzymatic, 2014, 109, 53-61.	1.8	42
29	Preparation and characterization of carboxymethyl starch microgel with different crosslinking densities. Carbohydrate Polymers, 2015, 124, 245-253.	5.1	42
30	Effects of Extrusion Technology Combined with Enzymatic Hydrolysis on the Structural and Physicochemical Properties of Porous Corn Starch. Food and Bioprocess Technology, 2020, 13, 442-451.	2.6	42
31	Improved bioaccessibility of phenolics and antioxidant activity of glutinous rice and its fermented Chinese rice wine by simultaneous extrusion and enzymatic hydrolysis. Journal of Functional Foods, 2015, 17, 214-226.	1.6	41
32	Development of nanoscale bioactive delivery systems using sonication: Glycyrrhizic acid-loaded cyclodextrin metal-organic frameworks. Journal of Colloid and Interface Science, 2019, 553, 549-556.	5.0	41
33	Pickering emulsions with enhanced storage stabilities by using hybrid β-cyclodextrin/short linear glucan nanoparticles as stabilizers. Carbohydrate Polymers, 2020, 229, 115418.	5.1	41
34	Amylose crystal seeds: Preparation and their effect on starch retrogradation. Food Hydrocolloids, 2020, 105, 105805.	5.6	41
35	Resistant starch and its nanoparticles: Recent advances in their green synthesis and application as functional food ingredients and bioactive delivery systems. Trends in Food Science and Technology, 2022, 119, 90-100.	7.8	38
36	Response surface methodology for evaluation and optimization of process parameter and antioxidant capacity of rice flour modified by enzymatic extrusion. Food Chemistry, 2016, 212, 146-154.	4.2	36

#	Article	IF	CITATIONS
37	Effect of chitosan molecular weight on the formation of chitosan–pullulanase soluble complexes and their application in the immobilization of pullulanase onto Fe3O4–κ-carrageenan nanoparticles. Food Chemistry, 2016, 202, 49-58.	4.2	35
38	Impact of amylose content on structural changes and oil absorption of fried maize starches. Food Chemistry, 2019, 287, 28-37.	4.2	34
39	The binding mechanism between cyclodextrins and pullulanase: A molecular docking, isothermal titration calorimetry, circular dichroism and fluorescence study. Food Chemistry, 2020, 321, 126750.	4.2	34
40	Characterization of acid hydrolysis of granular potato starch under induced electric field. Food Hydrocolloids, 2017, 71, 198-206.	5.6	33
41	Effective production of resistant starch using pullulanase immobilized onto magnetic chitosan/Fe3O4 nanoparticles. Food Chemistry, 2018, 239, 276-286.	4.2	33
42	Structural modification and functional improvement of starch nanoparticles using vacuum cold plasma. International Journal of Biological Macromolecules, 2020, 145, 197-206.	3.6	33
43	Bioactive and functional biodegradable packaging films reinforced with nanoparticles. Journal of Food Engineering, 2022, 312, 110752.	2.7	33
44	Effect of pullulan on oil absorption and structural organization of native maize starch during frying. Food Chemistry, 2020, 309, 125681.	4.2	32
45	Immobilization of pullulanase onto activated magnetic chitosan/Fe3O4 nanoparticles prepared by in situ mineralization and effect of surface functional groups on the stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 472, 69-77.	2.3	31
46	Potential interaction between β-cyclodextrin and amylose–lipid complex in retrograded rice starch. Carbohydrate Polymers, 2010, 80, 581-584.	5.1	30
47	Maltogenic α-amylase hydrolysis of wheat starch granules: Mechanism and relation to starch retrogradation. Food Hydrocolloids, 2022, 124, 107256.	5.6	30
48	New Method for the Immobilization of Pullulanase onto Hybrid Magnetic (Fe ₃ O ₄ –κ-Carrageenan) Nanoparticles by Electrostatic Coupling with Pullulanase/Chitosan Complex. Journal of Agricultural and Food Chemistry, 2015, 63, 3534-3542.	2.4	29
49	Continuous-flow electro-assisted acid hydrolysis of granular potato starch via inductive methodology. Food Chemistry, 2017, 229, 57-65.	4.2	28
50	Interactions between rice amylose and aroma compounds and their effect on rice fragrance release. Food Chemistry, 2019, 289, 603-608.	4.2	27
51	Green fabrication and characterization of debranched starch nanoparticles via ultrasonication combined with recrystallization. Ultrasonics Sonochemistry, 2020, 66, 105074.	3.8	27
52	Synthesis of pH- and ionic strength-responsive microgels and their interactions with lysozyme. International Journal of Biological Macromolecules, 2015, 79, 392-397.	3.6	26
53	Effect of acid-ethanol treatment and debranching on the structural characteristics and digestible properties of maize starches with different amylose contents. Food Hydrocolloids, 2017, 69, 229-235.	5.6	26
54	A simple and green method for preparation of non-crystalline granular starch through controlled gelatinization. Food Chemistry, 2019, 274, 268-273.	4.2	26

#	Article	IF	CITATIONS
55	Effect of annealing and heat-moisture pretreatments on the oil absorption of normal maize starch during frying. Food Chemistry, 2021, 353, 129468.	4.2	25
56	Insights into rice starch degradation by maltogenic α–amylase: Effect of starch structure on its rheological properties. Food Hydrocolloids, 2022, 124, 107289.	5.6	25
57	Effect of enzymatic (thermostable α-amylase) treatment on the physicochemical and antioxidant properties of extruded rice incorporated with soybean flour. Food Chemistry, 2016, 197, 114-123.	4.2	24
58	Preparation of malto-oligosaccharides with specific degree of polymerization by a novel cyclodextrinase from Palaeococcus pacificus. Carbohydrate Polymers, 2019, 210, 64-72.	5.1	24
59	Structural and property characterization of corn starch modified by cyclodextrin glycosyltransferase and specific cyclodextrinase. Carbohydrate Polymers, 2020, 237, 116137.	5.1	24
60	Effect of Thermostable α-Amylase Addition on the Physicochemical Properties, Free/Bound Phenolics and Antioxidant Capacities of Extruded Hulled and Whole Rice. Food and Bioprocess Technology, 2015, 8, 1958-1973.	2.6	23
61	Biological macromolecule delivery system for improving functional performance of hydrophobic nutraceuticals. Current Opinion in Food Science, 2016, 9, 56-61.	4.1	23
62	Hydrolytic mechanism of $\hat{l}\pm$ -maltotriohydrolase on waxy maize starch and retrogradation properties of the hydrolysates. Food Hydrocolloids, 2017, 66, 136-143.	5.6	23
63	Characterization of Different Substituted Carboxymethyl Starch Microgels and Their Interactions with Lysozyme. PLoS ONE, 2014, 9, e114634.	1.1	23
64	Development of an innovative induction heating technique for the treatment of liquid food: Principle, experimental validation and application. Journal of Food Engineering, 2020, 271, 109780.	2.7	22
65	In Situ Self-Assembly of Nanoparticles into Waxberry-Like Starch Microspheres Enhanced the Mechanical Strength, Fatigue Resistance, and Adhesiveness of Hydrogels. ACS Applied Materials & Interfaces, 2020, 12, 46609-46620.	4.0	21
66	Development of a fluidic system for efficient extraction of mulberry leaves polysaccharide using induced electric fields. Separation and Purification Technology, 2017, 172, 318-325.	3.9	20
67	Effect of New Frying Technology on Starchy Food Quality. Foods, 2021, 10, 1852.	1.9	20
68	The combined effects of extrusion and recrystallization treatments on the structural and physicochemical properties and digestibility of corn and potato starch. LWT - Food Science and Technology, 2021, 151, 112238.	2.5	20
69	Investigation of the Interactions between the Hydrophobic Cavities of Cyclodextrins and Pullulanase. Molecules, 2011, 16, 3010-3017.	1.7	19
70	Bioextrusion of Broken Rice in the Presence of Divalent Metal Salts: Effects on Starch Microstructure and Phenolics Compounds. ACS Sustainable Chemistry and Engineering, 2018, 6, 1162-1171.	3.2	19
71	Effect of exogenous metal ions and mechanical stress on rice processed in thermal-solid enzymatic reaction system related to further alcoholic fermentation efficiency. Food Chemistry, 2018, 240, 965-973.	4.2	19
72	Analysis of porous structure of potato starch granules by low-field NMR cryoporometry and AFM. International Journal of Biological Macromolecules, 2021, 173, 307-314.	3.6	19

#	Article	IF	CITATIONS
73	Encapsulation, protection, and delivery of curcumin using succinylated-cyclodextrin systems with strong resistance to environmental and physiological stimuli. Food Chemistry, 2022, 376, 131869.	4.2	19
74	Synergetic modification of waxy maize starch by dual-enzyme to lower the in vitro digestibility through modulating molecular structure and malto-oligosaccharide content. International Journal of Biological Macromolecules, 2021, 180, 187-193.	3.6	17
75	Effect of high-temperatures and aqueous ethanol treatment on the formation process and properties of V-type Granular Starch (VGS). Carbohydrate Polymers, 2021, 258, 117713.	5.1	16
76	Effects of cooling rate on retrograded nucleation of different rice starch-aromatic molecule complexes. Food Chemistry, 2019, 294, 179-186.	4.2	15
77	Contribution of starch to the flavor of rice-based instant foods. Critical Reviews in Food Science and Nutrition, 2022, 62, 8577-8588.	5.4	15
78	Impact of electrical conductivity on acid hydrolysis of guar gum under induced electric field. Food Chemistry, 2018, 259, 157-165.	4.2	14
79	Porous Starch-Based Material Prepared by Bioextrusion in the Presence of Zinc and Amylase–Magnesium Complex. ACS Sustainable Chemistry and Engineering, 2018, 6, 9572-9578.	3.2	14
80	Effect of egg yolk lipids on structure and properties of wheat starch in steamed bread. Journal of Cereal Science, 2019, 86, 77-85.	1.8	14
81	Synthesis and characterization of water-soluble β-cyclodextrin polymers via thiol-maleimide â€~click' chemistry. European Polymer Journal, 2020, 128, 109603.	2.6	14
82	Effects of induced electric field (IEF) on the reduction of Saccharomyces cerevisiae and quality of fresh apple juice. Food Chemistry, 2020, 325, 126943.	4.2	14
83	Preparation, Characteristics, and Advantages of Plant Protein-Based Bioactive Molecule Delivery Systems. Foods, 2022, 11, 1562.	1.9	14
84	Characterization and mechanism of action of Microbacterium imperiale glucan 1,4-α-maltotriohydrolase. Carbohydrate Research, 2014, 384, 46-50.	1.1	13
85	A reconfigurable fluidic reactor for intensification of hydrolysis at mild conditions. Chemical Engineering Journal, 2017, 313, 599-609.	6.6	13
86	Physicochemical properties of apple juice influenced by induced potential difference (induced electric) Tj ETQq0	0 0 rgBT / 2.7	/Overlock 10 T
87	Thermostable and mesophilic α-amylase: Effects on wheat starch physicochemical properties and their applications in extruded noodles. Journal of Cereal Science, 2019, 87, 248-257.	1.8	13
88	Thermophilic 4-α-Glucanotransferase from <i>Thermoproteus Uzoniensis</i> Retards the Long-Term Retrogradation but Maintains the Short-Term Gelation Strength of Tapioca Starch. Journal of Agricultural and Food Chemistry, 2020, 68, 5658-5667.	2.4	13
89	Preparation and characterization of porous starch/β-cyclodextrin microsphere for loading curcumin: Equilibrium, kinetics and mechanism of adsorption. Food Bioscience, 2021, 41, 101081.	2.0	13

90Preparation and Characterization of Food-Grade Pickering Emulsions Stabilized with Chitosan-Phytic1.91390Acid-Cyclodextrin Nanoparticles. Foods, 2022, 11, 450.1.913

#	Article	IF	CITATIONS
91	Deciphering external chain length and cyclodextrin production with starch catalyzed by cyclodextrin glycosyltransferase. Carbohydrate Polymers, 2022, 284, 119156.	5.1	11
92	Structural transformation and oil absorption of starches with different crystal types during frying. Food Chemistry, 2022, 390, 133115.	4.2	11
93	Preparation, characterization and in vitro digestive behaviors of emulsions synergistically stabilized by Î ³ -cyclodextrin/sodium caseinate/alginate. Food Research International, 2022, 160, 111634.	2.9	11
94	Evaluation of conductivity and moisture content of eggs during storage by using transformer method. Journal of Food Engineering, 2015, 155, 45-52.	2.7	10
95	An experimental system for extraction of pectin from orange peel waste based on the o-core transformer structure. Biosystems Engineering, 2016, 148, 48-54.	1.9	10
96	Effect of the extent and morphology of phase separation on the thermal behavior of co-blending systems based on soy protein isolate/alginate. Food Hydrocolloids, 2016, 52, 393-402.	5.6	10
97	Modification of physicochemical properties and degradation of barley flour upon enzymatic extrusion. Food Bioscience, 2022, 45, 101243.	2.0	10
98	Application of induced electric field for inner heating of kiwifruit juice and its analysis. Journal of Food Engineering, 2021, 306, 110609.	2.7	10
99	Inactivation of Escherichia coli O157:H7 in apple juice via induced electric field (IEF) and its bactericidal mechanism. Food Microbiology, 2022, 102, 103928.	2.1	10
100	Functional characterization of tryptophan437 at subsite +2 in pullulanase from Bacillus subtilis str. 168. International Journal of Biological Macromolecules, 2019, 133, 920-928.	3.6	9
101	A review of nanostructured delivery systems for the encapsulation, protection, and delivery of silymarin: An emerging nutraceutical. Food Research International, 2022, 156, 111314.	2.9	9
102	Development of pullulanase mutants to enhance starch substrate utilization for efficient production of β-CD. International Journal of Biological Macromolecules, 2021, 168, 640-648.	3.6	8
103	Effect of extrusion pretreatment on the physical and chemical properties of broad bean and its relationship to koji preparation. Food Chemistry, 2019, 286, 38-42.	4.2	7
104	A Cyclodextrin-Based Controlled Release System in the Simulation of In Vitro Small Intestine. Molecules, 2020, 25, 1212.	1.7	7
105	Green Preparation of Robust Hydrophobic β-Cyclodextrin/Chitosan Sponges for Efficient Removal of Oil from Water. Langmuir, 2021, 37, 14380-14389.	1.6	7
106	A study on the potential interaction between cyclodextrin and lipoxygenase. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2013, 76, 107-111.	1.6	6
107	Effect of electric field on calcium content of fresh-cut apples by inductive methodology. Journal of Food Engineering, 2016, 182, 81-86.	2.7	6
108	Residence Time Distribution for Evaluating Flow Patterns and Mixing Actions of Rice Extruded with Thermostable α-Amylase. Food and Bioprocess Technology, 2017, 10, 1015-1030.	2.6	6

#	Article	IF	CITATIONS
109	A Novel Cyclodextrin-Functionalized Hybrid Silicon Wastewater Nano-Adsorbent Material and Its Adsorption Properties. Molecules, 2018, 23, 1485.	1.7	6
110	Application of starch-based nanoparticles and cyclodextrin for prebiotics delivery and controlled glucose release in the human gut: a review. Critical Reviews in Food Science and Nutrition, 2023, 63, 6126-6137.	5.4	6
111	Effect of acid pretreatment on the physicochemical and antioxidant properties of germinated adlay () Tj ETQq1 1	0.784314	rgBT /Overl
112	Application of cyclodextrinase in nonâ€complexant production of γâ€cyclodextrin. Biotechnology Progress, 2020, 36, e2930.	1.3	4
113	Effects of the addition of thermostable α-amylase on the physicochemical and antioxidant properties of extrusion-pretreated Apios fortunei used for yellow wine fermentation. LWT - Food Science and Technology, 2021, , 112845.	2.5	4
114	A novel amylolytic enzyme from Palaeococcus ferrophilus with malto-oligosaccharide forming ability belonging to subfamily GH13_20. Food Bioscience, 2022, 45, 101498.	2.0	2
115	Preparative fractionation of dextrin by gradient alcohol precipitation. Separation Science and Technology, 2017, , 1-11.	1.3	1
116	Study on the evaluation standard of extruded glutinous rice starch with thermostable α―amylase for making Chinese rice wine. International Journal of Food Science and Technology, 0, , .	1.3	0
117	Application of induced voltage in cloudy apple juice: enzymatic browning and bioactive and flavouring compounds. International Journal of Food Science and Technology, 2022, 57, 4138-4147.	1.3	0