Hsun-Shuo Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8495402/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical investigations and cytotoxic effects of metabolites from <i>Antrodia camphorata</i> against human hepatocellular carcinoma cells. Natural Product Research, 2023, 37, 560-570.	1.0	3
2	Novel Antifungal Dimers from the Roots of Taiwania cryptomerioides. Molecules, 2022, 27, 437.	1.7	2
3	Meso-Dihydroguaiaretic Acid Ameliorates Acute Respiratory Distress Syndrome through Inhibiting Neutrophilic Inflammation and Scavenging Free Radical. Antioxidants, 2022, 11, 123.	2.2	3
4	Secondary Metabolites from the Actinobacterium Amycolatopsis taiwanensis. Chemistry of Natural Compounds, 2022, 58, 175-177.	0.2	2
5	Metabolites from a New Actinobacteria, Herbidospora yilanensis. Chemistry of Natural Compounds, 2022, 58, 172-174.	0.2	1
6	Cryptocaryone Promotes ROS-Dependent Antiproliferation and Apoptosis in Ovarian Cancer Cells. Cells, 2022, 11, 641.	1.8	5
7	Combined Treatment with Cryptocaryone and Ultraviolet C Promotes Antiproliferation and Apoptosis of Oral Cancer Cells. International Journal of Molecular Sciences, 2022, 23, 2981.	1.8	2
8	Undescribed alkyne-geranylcyclohexenetriols from the endophyte Diaporthe caulivora 09F0132 and their anti-melanogenic activity. Phytochemistry, 2022, 202, 113312.	1.4	1
9	Different types of components obtained from <i>Monascus purpureus</i> with neuroprotective and anti-inflammatory potentials. Food and Function, 2021, 12, 8694-8703.	2.1	4
10	ldentification of Beilschmiedia tsangii Root Extract as a Liver Cancer Cell–Normal Keratinocyte Dual-Selective NRF2 Regulator. Antioxidants, 2021, 10, 544.	2.2	11
11	Investigations into Chemical Components from Monascus purpureus with Photoprotective and Anti-Melanogenic Activities. Journal of Fungi (Basel, Switzerland), 2021, 7, 619.	1.5	7
12	Antileukemic Natural Product Induced Both Apoptotic and Pyroptotic Programmed Cell Death and Differentiation Effect. International Journal of Molecular Sciences, 2021, 22, 11239.	1.8	6
13	Ascleposide, a natural cardenolide, induces anticancer signaling in human castrationâ€resistant prostatic cancer through Na ⁺ /K ⁺ â€ATPase internalization and tubulin acetylation. Prostate, 2020, 80, 305-318.	1.2	8
14	Chemical Constituent of β-Glucuronidase Inhibitors from the Root of Neolitsea acuminatissima. Molecules, 2020, 25, 5170.	1.7	4
15	Anti-Inflammatory and Antibacterial Activity Constituents from the Stem of Cinnamomum validinerve. Molecules, 2020, 25, 3382.	1.7	6
16	Phytochemical Investigation and Anti-Inflammatory Activity of the Leaves of Machilus japonica var. kusanoi. Molecules, 2020, 25, 4149.	1.7	5
17	Chemical Constituents with GNMT-Promoter-Enhancing and NRF2-Reduction Activities from Taiwan Agarwood Excoecaria formosana. Molecules, 2020, 25, 1746.	1.7	10
18	Cinnamtannin B1 attenuates rosacea-like signs via inhibition of pro-inflammatory cytokine production and down-regulation of the MAPK pathway. PeerJ, 2020, 8, e10548.	0.9	3

#	Article	IF	CITATIONS
19	Benzenoid Derivatives and Amide Constituents of the Monascus spFermented Rice. Chemistry of Natural Compounds, 2019, 55, 787-789.	0.2	3
20	A Further Study of the Substrate Constituents of the Fungus Annulohypoxylon boveri var. microspora. Chemistry of Natural Compounds, 2019, 55, 920-921.	0.2	0
21	Chemcial Constituents of the Fungus Biscogniauxia cylindrospora. Chemistry of Natural Compounds, 2019, 55, 924-926.	0.2	7
22	Avocado (Persea americana) fruit extract (2R,4R)-1,2,4-trihydroxyheptadec-16-yne inhibits dengue virus replication via upregulation of NF-l̂ºB–dependent induction of antiviral interferon responses. Scientific Reports, 2019, 9, 423.	1.6	20
23	Three new constituents from the fungus of Monascus purpureus and their anti-inflammatory activity. Phytochemistry Letters, 2019, 31, 242-248.	0.6	16
24	Chemical Constituents of the Endophytic Fungus Ophiocordyceps sobolifera. Chemistry of Natural Compounds, 2019, 55, 309-312.	0.2	6
25	A New Azaphilone Derivative from the Monascus kaoliang Fermented Rice. Chemistry of Natural Compounds, 2019, 55, 79-81.	0.2	6
26	Secondary metabolites from the fermented rice of the fungus Monascus purpureus and their bioactivities. Natural Product Research, 2019, 33, 3541-3550.	1.0	19
27	Chemical Constituents of the Fungus Mycoleptodiscus sp. 09F0149. Chemistry of Natural Compounds, 2018, 54, 396-398.	0.2	7
28	High-Content Screening of a Taiwanese Indigenous Plant Extract Library Identifies Syzygium simile leaf Extract as an Inhibitor of Fatty Acid Uptake. International Journal of Molecular Sciences, 2018, 19, 2130.	1.8	11
29	A New Benzenoid Derivative from an Endophytic Fungus in Peperomia sui. Chemistry of Natural Compounds, 2018, 54, 625-627.	0.2	4
30	Chemical Constituents of the Endophytic Fungus Phomopsis asparagi Isolated from the Plant Peperomia sui. Chemistry of Natural Compounds, 2018, 54, 504-508.	0.2	9
31	Identification of anti-viral activity of the cardenolides, Na + /K + -ATPase inhibitors, against porcine transmissible gastroenteritis virus. Toxicology and Applied Pharmacology, 2017, 332, 129-137.	1.3	24
32	Bioactive composition of Reevesia formosana root and stem with cytotoxic activity potential. RSC Advances, 2017, 7, 27040-27047.	1.7	6
33	Secondary Metabolite from the Fungal Strain Monascus pilosus. Chemistry of Natural Compounds, 2017, 53, 874-876.	0.2	0
34	Secondary metabolites produced by an endophytic fungus Cordyceps ninchukispora from the seeds of Beilschmiedia erythrophloia Hayata. Phytochemistry Letters, 2017, 22, 179-184.	0.6	4
35	Two new sesquarterpenoids from the bark of Cryptomeria japonica. Phytochemistry Letters, 2017, 22, 56-60.	0.6	11
36	Three new abietane-type diterpenes from the bark of Cryptomeria japonica. Phytochemistry Letters, 2017, 19, 46-49.	0.6	10

#	Article	IF	CITATIONS
37	Two New Abietane-type Diterpenes from the Bark of Cryptomeria japonica. Natural Product Communications, 2017, 12, 1934578X1701201.	0.2	2
38	Secondary Metabolites of the Endophytic Fungus Lachnum abnorme from Ardisia cornudentata. International Journal of Molecular Sciences, 2016, 17, 1512.	1.8	10
39	Sesquiterpenoids and Diterpenoids from the Wood of Cunninghamia konishii and Their Inhibitory Activities against NO Production. Molecules, 2016, 21, 490.	1.7	0
40	Cytotoxic cardenolides and sesquiterpenoids from the fruits of Reevesia formosana. Phytochemistry, 2016, 130, 282-290.	1.4	10
41	Terpene Alkaloid Glucosides and Apocarotenoids from Symplocos anomala. Chemistry of Natural Compounds, 2016, 52, 560-563.	0.2	0
42	Antiproliferation of Cryptocarya concinna-derived cryptocaryone against oral cancer cells involving apoptosis, oxidative stress, and DNA damage. BMC Complementary and Alternative Medicine, 2016, 16, 94.	3.7	25
43	Synergistic anti-oral cancer effects of UVC and methanolic extracts of Cryptocarya concinna roots via apoptosis, oxidative stress and DNA damage. International Journal of Radiation Biology, 2016, 92, 263-272.	1.0	11
44	Chemical constituents and bioactivity of Formosan lauraceous plants. Journal of Food and Drug Analysis, 2016, 24, 247-263.	0.9	17
45	Six new metabolites produced by <i>Colletotrichum aotearoa</i> 09F0161, an endophytic fungus isolated from <i>Bredia oldhamii</i> . Natural Product Research, 2016, 30, 251-258.	1.0	19
46	Attenuation of antigen-specific T helper 1 immunity by Neolitsea hiiranensis and its derived terpenoids. PeerJ, 2016, 4, e2758.	0.9	4
47	Biological Evaluation of Secondary Metabolites from the Root of <i>Machilus obovatifolia</i> . Chemistry and Biodiversity, 2015, 12, 1057-1067.	1.0	14
48	Chemical Constituents of the Endophytic Fungus <i>Hypoxylon</i> sp.â€12F0687 Isolated from Taiwanese <i>llex formosana</i> . Helvetica Chimica Acta, 2015, 98, 1167-1176.	1.0	11
49	New Furanone and Sesquiterpene from the Pericarp of Calocedrus formosana. Natural Product Communications, 2015, 10, 1934578X1501000.	0.2	3
50	Two New Labdaneâ€Type Diterpene Acids from the Wood of <i>Cunninghamia konishii</i> . Helvetica Chimica Acta, 2015, 98, 123-127.	1.0	3
51	Identification of Five New Minor Constituents from the Whole Plant of <i>Amischotolype hispida</i> . Helvetica Chimica Acta, 2015, 98, 347-358.	1.0	9
52	Sassarandainol: a new neolignan and anti-inflammatory constituents from the stem of <i>Sassafras randaiense</i> . Natural Product Research, 2015, 29, 827-832.	1.0	6
53	<i>Epi</i> -reevesioside F inhibits Na+/K+-ATPase, causing cytosolic acidification, Bak activation and apoptosis in glioblastoma. Oncotarget, 2015, 6, 24032-24046.	0.8	7
54	Reevesioside A, a Cardenolide Glycoside, Induces Anticancer Activity against Human Hormone-Refractory Prostate Cancers through Suppression of c-myc Expression and Induction of G1 Arrest of the Cell Cycle. PLoS ONE, 2014, 9, e87323.	1.1	25

#	Article	IF	CITATIONS
55	Antiproliferative Effects of Methanolic Extracts of <i>Cryptocarya concinna</i> Hance Roots on Oral Cancer Ca9-22 and CAL 27 Cell Lines Involving Apoptosis, ROS Induction, and Mitochondrial Depolarization. Scientific World Journal, The, 2014, 2014, 1-10.	0.8	14
56	New and Cytotoxic Components from Antrodia camphorata. Molecules, 2014, 19, 21378-21385.	1.7	11
57	Two New Labdane-type Diterpenes from the Wood of <i>Cunninghamia konishii</i> . Natural Product Communications, 2014, 9, 1934578X1400900.	0.2	1
58	Discovery of selective inhibitors of Glutaminase-2, which inhibit mTORC1, activate autophagy and inhibit proliferation in cancer cells. Oncotarget, 2014, 5, 6087-6101.	0.8	63
59	Unprecedented 8,9′-Neolignans: Enantioselective Synthesis of Possible Stereoisomers for Structural Determination. Journal of Natural Products, 2014, 77, 2585-2589.	1.5	4
60	Inhibitory Effects of Constituents of an Endophytic Fungus <i>Hypoxylon investiens</i> on Nitric Oxide and Interleukinâ€6 Production in RAW264.7 Macrophages. Chemistry and Biodiversity, 2014, 11, 949-961.	1.0	31
61	Secondary Metabolites from the Endophytic Fungus <i>Xylaria cubensis</i> . Helvetica Chimica Acta, 2014, 97, 1689-1699.	1.0	24
62	Three New Phenylpropanoids from the Roots ofPiper taiwanenseand Their Inhibitory Activities on Platelet Aggregation andMycobacterium tuberculosis. Chemistry and Biodiversity, 2014, 11, 792-799.	1.0	7
63	TIPdb-3D: the three-dimensional structure database of phytochemicals from Taiwan indigenous plants. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau055-bau055.	1.4	29
64	Chemical Constituents of Metabolites Produced by the Actinomycete Acrocarpospora punica. Chemistry of Natural Compounds, 2014, 50, 606-610.	0.2	3
65	Biological evaluation of secondary metabolites from the roots of Myrica adenophora. Phytochemistry, 2014, 103, 89-98.	1.4	16
66	Ardisianone, a natural benzoquinone, efficiently induces apoptosis in human hormoneâ€refractory prostate cancers through mitochondrial damage stress and survivin downregulation. Prostate, 2013, 73, 133-145.	1.2	22
67	Phytochemical Investigation of <i>Annulohypoxylon ilanense</i> , an Endophytic Fungus Derived from <i>Cinnamomum</i> Species. Chemistry and Biodiversity, 2013, 10, 493-505.	1.0	18
68	Cytotoxic cardenolide glycosides from the root of Reevesia formosana. Phytochemistry, 2013, 87, 86-95.	1.4	16
69	Reevesioside F induces potent and efficient anti-proliferative and apoptotic activities through Na+/K+-ATPase α3 subunit-involved mitochondrial stress and amplification of caspase cascades. Biochemical Pharmacology, 2013, 86, 1564-1575.	2.0	17
70	Triterpenoids from the Roots of Rhaphiolepis indica var. tashiroi and Their Anti-Inflammatory Activity. International Journal of Molecular Sciences, 2013, 14, 8890-8898.	1.8	12
71	The Effect of the Aerial Part of Lindera akoensis on Lipopolysaccharides (LPS)-Induced Nitric Oxide Production in RAW264.7 Cells. International Journal of Molecular Sciences, 2013, 14, 9168-9181.	1.8	21
72	Chemical Constituents from a Soilâ€Derived Actinomycete, <i>Actinomadura miaoliensis</i> BCRC 16873, and Their Inhibitory Activities on Lipopolysaccharideâ€Induced Tumor Necrosis Factor Production. Chemistry and Biodiversity, 2013, 10, 303-312.	1.0	8

#	Article	IF	CITATIONS
73	Two New Lignans from the Wood of Cunninghamia konishii. Natural Product Communications, 2013, 8, 1934578X1300800.	0.2	0
74	Aconitamide, a Novel Alkaloid from the Roots of <i>Aconitum carmichaeli</i> . Natural Product Communications, 2013, 8, 1934578X1300800.	0.2	3
75	Secondary Metabolites from the Roots of Beilschmiedia tsangii and Their Anti-Inflammatory Activities. International Journal of Molecular Sciences, 2012, 13, 16430-16443.	1.8	21
76	Secondary metabolites from the unripe pulp of Persea americana and their antimycobacterial activities. Food Chemistry, 2012, 135, 2904-2909.	4.2	38
77	Secondary metabolites from the stems of Engelhardia roxburghiana and their antitubercular activities. Phytochemistry, 2012, 82, 118-127.	1.4	41
78	Secondary metabolites from the root of Ehretia longiflora and their biological activities. Phytochemistry, 2012, 80, 50-57.	1.4	24
79	Antitubercular Resorcinol Analogs and Benzenoid C-Glucoside from the Roots of <i>Ardisia cornudentata</i> . Planta Medica, 2011, 77, 60-65.	0.7	14
80	Anti-inflammatory Endiandric Acid Analogues from the Roots of <i>Beilschmiedia tsangii</i> . Journal of Natural Products, 2011, 74, 1875-1880.	1.5	20
81	Secondary Metabolites from the Roots of <i>Neolitsea daibuensis</i> and Their Anti-inflammatory Activity. Journal of Natural Products, 2011, 74, 2489-2496.	1.5	43
82	Secondary metabolites from the leaves of Neolitsea hiiranensis and the anti-inflammatory activity of some of them. Phytochemistry, 2011, 72, 415-422.	1.4	17
83	Costunolide causes mitotic arrest and enhances radiosensitivity in human hepatocellular carcinoma cells. Radiation Oncology, 2011, 6, 56.	1.2	49
84	Secondary Metabolites from <i>Magnolia kachirachirai</i> . Helvetica Chimica Acta, 2011, 94, 703-710.	1.0	6
85	Cytotoxic Sesquiterpenes from <i>Magnolia kachirachirai</i> . Chemistry and Biodiversity, 2010, 7, 2737-2747.	1.0	29
86	Anti-inflammatory Biphenyls and Dibenzofurans from <i>Rhaphiolepis indica</i> . Journal of Natural Products, 2010, 73, 1628-1631.	1.5	33
87	Prenyl Coumarins from <i>Fatoua pilosa</i> . Journal of Natural Products, 2010, 73, 1718-1722.	1.5	9
88	Secondary Metabolites and Cytotoxic Activities from the Stem Bark of <i>Zanthoxylum nitidum</i> . Chemistry and Biodiversity, 2009, 6, 846-857.	1.0	46
89	Cytotoxic alkyl benzoquinones and alkyl phenols from Ardisia virens. Phytochemistry, 2009, 70, 2064-2071.	1.4	42
90	Secondary Metabolites from the Leaves of <i>Litsea lii</i> var. <i>nunkaoâ€ŧahangensis</i> . Helvetica Chimica Acta, 2008, 91, 1036-1044.	1.0	11

#	Article	IF	CITATIONS
91	Secondary Metabolites from the Stem Bark of <i>Litsea akoensis</i> and Their Cytotoxic Activity. Helvetica Chimica Acta, 2008, 91, 1156-1165.	1.0	16
92	Antimycobacterial Butanolides from the Root of <i>Lindera akoensis</i> . Chemistry and Biodiversity, 2008, 5, 2690-2698.	1.0	30
93	Biphenyls from Pourthiaea lucida. Biochemical Systematics and Ecology, 2007, 35, 248-250.	0.6	5