List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8495160/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fabrication of flavour oil high internal phase emulsions by casein/pectin hybrid particles: 3D printing performance. Food Chemistry, 2022, 371, 131349.	4.2	37
2	PM1-loaded recombinant human H-ferritin nanocages: A novel pH-responsive sensing platform for the identification of cancer cells. International Journal of Biological Macromolecules, 2022, 199, 223-233.	3.6	9
3	Strong fish gelatin hydrogels double crosslinked by transglutaminase and carrageenan. Food Chemistry, 2022, 376, 131873.	4.2	28
4	Rapid and sensitive detection of clomazone in potato and pumpkin samples using a gold nanoparticle-based lateral-flow strip. Food Chemistry, 2022, 375, 131888.	4.2	19
5	Inhibitory effects of Atlantic cod (<i>Gadus morhua</i>) peptides on RANKL-induced osteoclastogenesis <i>in vitro</i> and osteoporosis in ovariectomized mice. Food and Function, 2022, 13, 1975-1988.	2.1	9
6	Enhanced thermal stability of soy protein particles by a combined treatment of microfluidic homogenisation and preheating. International Journal of Food Science and Technology, 2022, 57, 3089-3097.	1.3	1
7	Coâ€folding scallop muscle proteins with soy βâ€conglycinin or glycinin towards composites with tunable solubility and digestibility. International Journal of Food Science and Technology, 2022, 57, 5329-5337.	1.3	2
8	Preheat-induced soy protein particles with tunable heat stability. Food Chemistry, 2021, 336, 127624.	4.2	28
9	Low oil emulsion gel stabilized by defatted Antarctic krill (Euphausia superba) protein using high-intensity ultrasound. Ultrasonics Sonochemistry, 2021, 70, 105294.	3.8	61
10	High throughput analysis and quantitation of α-dicarbonyls in biofluid by plasmonic nanoshells enhanced laser desorption/ionization mass spectrometry. Journal of Hazardous Materials, 2021, 403, 123580.	6.5	7
11	Effects of preheat treatment on the physicochemical and interfacial properties of cod proteins and its relation to the stability of subsequent emulsions. Food Hydrocolloids, 2021, 112, 106338.	5.6	31
12	High stability of bilayer nano-emulsions fabricated by Tween 20 and specific interfacial peptides. Food Chemistry, 2021, 340, 127877.	4.2	20
13	Advancement of foodâ€derived mixed protein systems: Interactions, aggregations, and functional properties. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 627-651.	5.9	28
14	Reduced Adhesive Force Leading to Enhanced Thermal Stability of Soy Protein Particles by Combined Preheating and Ultrasonic Treatment. Journal of Agricultural and Food Chemistry, 2021, 69, 3015-3025.	2.4	14
15	Strong, elastic, and tough high internal phase emulsions stabilized solely by cod myofibers for multidisciplinary applications. Chemical Engineering Journal, 2021, 412, 128724.	6.6	37
16	Effect of hydroxyl radical induced oxidation on the physicochemical and gelling properties of shrimp myofibrillar protein and its mechanism. Food Chemistry, 2021, 351, 129344.	4.2	58
17	Mechanism of enhancing the water-solubility and stability of curcumin by using self-assembled cod protein nanoparticles at an alkaline pH. Food and Function, 2021, 12, 12696-12705.	2.1	13
18	Structural interplay between curcumin and soy protein to improve the water-solubility and stability of curcumin. International Journal of Biological Macromolecules, 2021, 193, 1471-1480.	3.6	40

#	Article	IF	CITATIONS
19	Enhancing the thermal stability of soy proteins by preheat treatment at lower protein concentration. Food Chemistry, 2020, 306, 125593.	4.2	28
20	Effect of partial replacement of water-soluble cod proteins by soy proteins on the heat-induced aggregation and gelation properties of mixed protein systems. Food Hydrocolloids, 2020, 100, 105417.	5.6	63
21	Preheat-stabilized pea proteins with anti-aggregation properties. International Journal of Biological Macromolecules, 2020, 155, 1288-1295.	3.6	11
22	The mechanism of improved thermal stability of protein-enriched O/W emulsions by soy protein particles. Food and Function, 2020, 11, 1385-1396.	2.1	17
23	Ultrasound pre-fractured casein and in-situ formation of high internal phase emulsions. Ultrasonics Sonochemistry, 2020, 64, 104916.	3.8	29
24	Biological and conventional food processing modifications on food proteins: Structure, functionality, and bioactivity. Biotechnology Advances, 2020, 40, 107491.	6.0	55
25	Concentration-dependent improvement of gelling ability of soy proteins by preheating or ultrasound treatment. LWT - Food Science and Technology, 2020, 134, 110170.	2.5	29
26	High Internal Phase Emulsion for Food-Grade 3D Printing Materials. ACS Applied Materials & Interfaces, 2020, 12, 45493-45503.	4.0	89
27	Inducing secondary structural interplays between scallop muscle proteins and soy proteins to form soluble composites. Food and Function, 2020, 11, 3351-3360.	2.1	8
28	Heat treatments of peptides from oyster (Crassostrea gigas) and the impact on their digestibility and angiotensin I converting enzyme inhibitory activity. Food Science and Biotechnology, 2020, 29, 961-967.	1.2	6
29	A self-sorted gel network formed by heating a mixture of soy and cod proteins. Food and Function, 2019, 10, 5140-5151.	2.1	40
30	Ultrasound treatment improved the physicochemical characteristics of cod protein and enhanced the stability of oil-in-water emulsion. Food Research International, 2019, 121, 247-256.	2.9	122
31	The water holding capacity and storage modulus of chemical cross-linked soy protein gels directly related to aggregates size. LWT - Food Science and Technology, 2019, 103, 125-130.	2.5	49
32	Effects of ultrasound treatment on the physicochemical and emulsifying properties of proteins from scallops (Chlamys farreri). Food Hydrocolloids, 2019, 89, 707-714.	5.6	58
33	The relationship between breaking force and hydrophobic interactions or disulfide bonds involved in heatâ€induced soy protein gels as affected by heating time and temperature. International Journal of Food Science and Technology, 2019, 54, 231-239.	1.3	22
34	Beneficial effects of polysaccharides on the solubility of Mytilus edulis enzymatic hydrolysates. Food Chemistry, 2018, 254, 103-108.	4.2	10
35	Identification and analysis of bioactive peptides from scallops (Chlamys farreri) protein by simulated gastrointestinal digestion. Journal of Food Processing and Preservation, 2018, 42, e13760.	0.9	3
36	Effect of Ball Mill Treatment on the Physicochemical Properties and Digestibility of Protein Extracts Generated from Scallops (Chlamys farreri). International Journal of Molecular Sciences, 2018, 19, 531.	1.8	15

#	Article	IF	CITATIONS
37	Effects of removal of non-network protein on the rheological properties of heat-induced soy protein gels. LWT - Food Science and Technology, 2018, 95, 193-199.	2.5	25
38	Microstructure and model solute transport properties of transglutaminaseâ€induced soya protein gels: effect of enzyme dosage, protein composition and solute size. International Journal of Food Science and Technology, 2017, 52, 1527-1533.	1.3	3
39	Effect of temperature, ionic strength and 11S ratio on the rheological properties of heat-induced soy protein gels in relation to network proteins content and aggregates size. Food Hydrocolloids, 2017, 66, 389-395.	5.6	110
40	Effect of 7S/11S ratio on the network structure of heat-induced soy protein gels: a study of probe release. RSC Advances, 2016, 6, 101981-101987.	1.7	18
41	Biosynthesis of lactosylfructoside by an intracellular levansucrase from Bacillus methylotrophicus SK 21.002. Carbohydrate Research, 2015, 401, 122-126.	1.1	19
42	Release Behavior of Non-Network Proteins and Its Relationship to the Structure of Heat-Induced Soy Protein Gels. Journal of Agricultural and Food Chemistry, 2015, 63, 4211-4219.	2.4	38
43	Frozen Bread Dough Properties Modified by Thermostable Ice Structuring Proteins Extract from Chinese Privet (<i>Ligustrum vulgare</i>) Leaves. Cereal Chemistry, 2012, 89, 162-167.	1.1	24