Velasco-Santos Carlos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8494802/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low Concentrations for Significant Improvements in Thermal and Thermomechanical Properties of Poly(Lactic Acid)–Keratin Biocomposites Obtained by Extrusion and 3D Printing. Journal of Natural Fibers, 2022, 19, 1715-1728.	1.7	9
2	Nanocellulose Extraction of Pineapple Leaves for Chitosan-starch Nanocomposites. Journal of Natural Fibers, 2022, 19, 3624-3637.	1.7	6
3	Design, development, and experimental setup of near-field electrospinning with a sharp electrode: Influence of procedural parameters on the 3D nanofiber structure. Review of Scientific Instruments, 2022, 93, 013906.	0.6	0
4	Experimental approximation of the sound absorption coefficient (â^) for 3D printed reentrant auxetic structures of poly lactic acid reinforced with chicken keratin materials. Materials Letters, 2021, 283, 128757.	1.3	12
5	Additive manufacturing of green composites: Poly (lactic acid) reinforced with keratin materials obtained from Angora rabbit hair. Journal of Applied Polymer Science, 2021, 138, 50321.	1.3	6
6	High adsorption of methylene blue from water onto graphenic materials: Effect of degree of graphitization and analysis of kinetic models. Environmental Progress and Sustainable Energy, 2021, 40, e13618.	1.3	4
7	Effect of the Melicoccus bijugatus leaf and fruit extracts and acidic solvents on the antimicrobial properties of chitosan–starch films. Journal of Applied Microbiology, 2021, 131, 1162-1176.	1.4	0
8	Performance of Graphene Derivatives Produced by Chemical and Physical Methods as Reinforcements in Glass Fiber Composite Laminates. Applied Composite Materials, 2021, 28, 923-949.	1.3	3
9	Improvements in the thermomechanical and electrical behavior of hybrid carbon-epoxy nanocomposites. Carbon Trends, 2021, 5, 100126.	1.4	0
10	Chitosan–Starch Films Modified with Natural Extracts to Remove Heavy Oil from Water. Water (Switzerland), 2020, 12, 17.	1.2	11
11	3D printing of PLA composites scaffolds reinforced with keratin and chitosan: Effect of geometry and structure. European Polymer Journal, 2020, 141, 110088.	2.6	42
12	Adsorption and kinetic study of Reactive Red 2 dye onto graphene oxides and graphene quantum dots. Diamond and Related Materials, 2020, 109, 108002.	1.8	30
13	Single-step exfoliation and functionalization of few-layers black phosphorus and its application for polymer composites. FlatChem, 2019, 18, 100131.	2.8	28
14	One- and two-dimensional carbon nanomaterials as adsorbents of cationic and anionic dyes from aqueous solutions. Carbon Letters, 2019, 29, 155-166.	3.3	13
15	Non-linear modeling of kinetic and equilibrium data for the adsorption of hexavalent chromium by carbon nanomaterials: Dimension and functionalization. Chinese Journal of Chemical Engineering, 2019, 27, 912-919.	1.7	25
16	Electrophoretic deposition of carbon nanotubes onto glass fibers for self-sensing relaxation-induced piezoresistivity of monofilament composites. Journal of Materials Science, 2019, 54, 2205-2221.	1.7	7
17	Influence of the Hybrid Combination of Multiwalled Carbon Nanotubes and Graphene Oxide on Interlaminar Mechanical Properties of Carbon Fiber/Epoxy Laminates. Applied Composite Materials, 2018, 25, 1115-1131.	1.3	62
18	Chitosan–Starch–Keratin Composites: Improving Thermo-Mechanical and Degradation Properties Through Chemical Modification. Journal of Polymers and the Environment, 2018, 26, 2182-2191.	2.4	26

#	Article	IF	CITATIONS
19	Effect of seawater ageing on interlaminar fracture toughness of carbon fiber/epoxy composites containing carbon nanofillers. Journal of Reinforced Plastics and Composites, 2018, 37, 1346-1359.	1.6	16
20	Starch Modified With Chitosan and Reinforced With Feather Keratin Materials Produced by Extrusion Process: An Alternative to Starch Polymers. Starch/Staerke, 2018, 70, 1700295.	1.1	14
21	Chitosan-Starch Films with Natural Extracts: Physical, Chemical, Morphological and Thermal Properties. Materials, 2018, 11, 120.	1.3	78
22	Multidimensional Nanocomposites of Epoxy Reinforced with 1D and 2D Carbon Nanostructures for Improve Fracture Resistance. Polymers, 2018, 10, 281.	2.0	14
23	1D and 2D oxidized carbon nanomaterials on epoxy matrix: performance of composites over the same processing conditions. Materials Research Express, 2017, 4, 115604.	0.8	9
24	Antimicrobial, Optical and Mechanical Properties of Chitosan–Starch Films with Natural Extracts. International Journal of Molecular Sciences, 2017, 18, 997.	1.8	81
25	Carbon Nanotube and Graphene Based Polyamide Electrospun Nanocomposites: A Review. Journal of Nanomaterials, 2016, 2016, 1-16.	1.5	34
26	Adsorption of Phenol from Aqueous Solutions by Carbon Nanomaterials of One and Two Dimensions: Kinetic and Equilibrium Studies. Journal of Nanomaterials, 2015, 2015, 1-14.	1.5	45
27	Photocatalytic Activity in Phenol Removal of Water from Graphite and Graphene Oxides: Effect of Degassing and Chemical Oxidation in the Synthesis Process. Journal of Chemistry, 2015, 2015, 1-10.	0.9	19
28	Effect of Keratin Structures from Chicken Feathers on Expansive Soil Remediation. Advances in Materials Science and Engineering, 2015, 2015, 1-10.	1.0	9
29	Graphene oxide and reduced graphene oxide modification with polypeptide chains from chicken feather keratin. Journal of Alloys and Compounds, 2015, 643, S137-S143.	2.8	22
30	Study of thermal properties of mullite porous materials. Journal of Thermal Analysis and Calorimetry, 2015, 120, 1553-1561.	2.0	2
31	4-chlorophenol removal from water using graphite and graphene oxides as photocatalysts. Journal of Environmental Health Science & Engineering, 2015, 13, 33.	1.4	38
32	Comparison as Effective Photocatalyst or Adsorbent of Carbon Materials of One, Two, and Three Dimensions for the Removal of Reactive Red 2 in Water. Environmental Engineering Science, 2015, 32, 872-880.	0.8	14
33	Composites from chicken feathers quill and recycled polypropylene. Journal of Composite Materials, 2015, 49, 275-283.	1.2	54
34	All Green Composites from Fully Renewable Biopolymers: Chitosan-Starch Reinforced with Keratin from Feathers. Polymers, 2014, 6, 686-705.	2.0	87
35	Influence of 1D and 2D Carbon Fillers and Their Functionalisation on Crystallisation and Thermomechanical Properties of Injection Moulded Nylon 6,6 Nanocomposites. Journal of Nanomaterials, 2014, 2014, 1-13.	1.5	4
36	Structural Characterization of Silica Particles Extracted from Grass <i>Stenotaphrum secundatum</i> : Biotransformation via Annelids. Advances in Materials Science and Engineering, 2014, 2014, 1-7	1.0	14

#	Article	IF	CITATIONS
37	Chitosan–starch film reinforced with magnetite-decorated carbon nanotubes. Journal of Alloys and Compounds, 2014, 615, S505-S510.	2.8	35
38	Synthesis and investigation of PMMA films with homogeneously dispersed multiwalled carbon nanotubes. Materials Chemistry and Physics, 2013, 140, 458-464.	2.0	27
39	Covalently Bonded Chitosan on Graphene Oxide via Redox Reaction. Materials, 2013, 6, 911-926.	1.3	89
40	Grafting of Multiwalled Carbon Nanotubes with Chicken Feather Keratin. Journal of Nanomaterials, 2013, 2013, 1-9.	1.5	25
41	Effects on the Thermo-Mechanical and Crystallinity Properties of Nylon 6,6 Electrospun Fibres Reinforced with One Dimensional (1D) and Two Dimensional (2D) Carbon. Materials, 2013, 6, 3494-3513.	1.3	124
42	Improved Performance of an Epoxy Matrix as a Result of Combining Graphene Oxide and Reduced Graphene. International Journal of Polymer Science, 2013, 2013, 1-7.	1.2	32
43	Polyurethane-Keratin Membranes: Structural Changes by Isocyanate and pH, and the Repercussion on Cr(VI) Removal. International Journal of Polymer Science, 2013, 2013, 1-12.	1.2	15
44	Nylon 6,6 electrospun fibres reinforced by amino functionalised 1D and 2D carbon. IOP Conference Series: Materials Science and Engineering, 2012, 40, 012023.	0.3	4
45	Polysaccharide Nanocomposites Reinforced with Graphene Oxide and Keratin-Grafted Graphene Oxide. Industrial & Engineering Chemistry Research, 2012, 51, 3619-3629.	1.8	101
46	Removal of Hexavalent Chromium from Water by Polyurethane–Keratin Hybrid Membranes. Water, Air, and Soil Pollution, 2011, 218, 557-571.	1.1	42
47	(Chicken feathers keratin)/polyurethane membranes. Applied Physics A: Materials Science and Processing, 2011, 104, 219-228.	1.1	37
48	Influence of Silanization Treatment on Thermomechanical Properties of Multiwalled Carbon Nanotubes: Poly(methylmethacrylate) Nanocomposites. Journal of Nanomaterials, 2011, 2011, 1-9.	1.5	26
49	Natural-Synthetic Hybrid Polymers Developed via Electrospinning: The Effect of PET in Chitosan/Starch System. International Journal of Molecular Sciences, 2011, 12, 1908-1920.	1.8	39
50	Novel Crystalline SiO2 Nanoparticles via Annelids Bioprocessing of Agro-Industrial Wastes. Nanoscale Research Letters, 2010, 5, 1408-1417.	3.1	69
51	Carbon Nanotubes Composites: Processing, Grafting and Mechanical and Thermal Properties. Current Nanoscience, 2010, 6, 12-39.	0.7	102
52	Carbon nanotube junctions obtained by pulsed liquid injection chemical vapour deposition. Diamond and Related Materials, 2010, 19, 1052-1057.	1.8	1
53	Polymer concretes improved by fiber reinforcement and gamma irradiation. E-Polymers, 2009, 9, .	1.3	7
54	Effect of Functionalization on the Crystallization Behavior of MWNT-PBT Nanocomposites. Materials Research Society Symposia Proceedings, 2007, 1056, 1.	0.1	0

#	Article	IF	CITATIONS
55	Dynamical–mechanical and thermal analysis of polymeric composites reinforced with keratin biofibers from chicken feathers. Composites Part B: Engineering, 2007, 38, 405-410.	5.9	149
56	Mechanical properties evaluation of new composites with protein biofibers reinforcing poly(methyl) Tj ETQq0 0 C	rgBT /Ove	erlogk 10 Tf 5 43
57	Carbon nanotube-polymer nanocomposites: The role of interfaces. Composite Interfaces, 2005, 11, 567-586.	1.3	93
58	Hydrogen Bonding of Polystyrene Latex Nanospheres to Sidewall Carbon Nanotubes. Journal of Physical Chemistry B, 2004, 108, 18866-18869.	1.2	24
59	Naturally produced carbon nanotubes. Chemical Physics Letters, 2003, 373, 272-276.	1.2	46
60	Improvement of Thermal and Mechanical Properties of Carbon Nanotube Composites through Chemical Functionalization. Chemistry of Materials, 2003, 15, 4470-4475.	3.2	382
61	Grafting of methyl methacrylate onto natural keratin. E-Polymers, 2003, 3, .	1.3	15
62	Dynamical–mechanical and thermal analysis of carbon nanotube–methyl-ethyl methacrylate nanocomposites. Journal Physics D: Applied Physics, 2003, 36, 1423-1428.	1.3	106
63	Hierarchical Microstructure in Keratin Biofibers. Microscopy and Microanalysis, 2003, 9, 1282-1283.	0.2	8
64	Chemical functionalization of carbon nanotubes through an organosilane. Nanotechnology, 2002, 13, 495-498.	1.3	211
65	Graphene $\hat{a} {\in} B$ ased Materials Functionalization with Natural Polymeric Biomolecules. , 0, , .		10