Ruth D Murrell-Lagnado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8494768/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of P2X4 receptors by lysosomal targeting, glycan protection and exocytosis. Journal of Cell Science, 2007, 120, 3838-3849.	2.0	191
2	Atomic Force Microscopy Imaging Demonstrates that P2X2 Receptors Are Trimers but That P2X6 Receptor Subunits Do Not Oligomerize. Journal of Biological Chemistry, 2005, 280, 10759-10765.	3.4	169
3	P2X Receptor Trafficking in Neurons Is Subunit Specific. Journal of Neuroscience, 2002, 22, 4814-4824.	3.6	148
4	Analysis of Assembly and Trafficking of Native P2X4 and P2X7 Receptor Complexes in Rodent Immune Cells. Journal of Biological Chemistry, 2009, 284, 13446-13454.	3.4	119
5	P2X4 Forms Functional ATP-activated Cation Channels on Lysosomal Membranes Regulated by Luminal pH. Journal of Biological Chemistry, 2014, 289, 17658-17667.	3.4	115
6	Calcium release through P2X4 activates calmodulin to promote endolysosomal membrane fusion. Journal of Cell Biology, 2015, 209, 879-894.	5.2	108
7	Identification of a Non-canonical Tyrosine-based Endocytic Motif in an Ionotropic Receptor. Journal of Biological Chemistry, 2002, 277, 35378-35385.	3.4	84
8	Non-canonical YXXGΦ endocytic motifs: recognition by AP2 and preferential utilization in P2X4 receptors. Journal of Cell Science, 2005, 118, 3073-3080.	2.0	82
9	Sigma1 receptors inhibit store-operated Ca2+ entry by attenuating coupling of STIM1 to Orai1. Journal of Cell Biology, 2016, 213, 65-79.	5.2	76
10	Splice-variants of the P2X7 receptor reveal differential agonist-dependence and functional coupling with pannexin-1. Journal of Cell Science, 2012, 125, 3776-89.	2.0	59
11	Plasma Membrane Cholesterol as a Regulator of Human and Rodent P2X7 Receptor Activation and Sensitization. Journal of Biological Chemistry, 2014, 289, 31983-31994.	3.4	58
12	An Uncharged Region within the N Terminus of the P2X6 Receptor Inhibits Its Assembly and Exit from the Endoplasmic Reticulum. Molecular Pharmacology, 2006, 69, 1692-1700.	2.3	57
13	Assembly and trafficking of P2X purinergic receptors (Review). Molecular Membrane Biology, 2008, 25, 321-331.	2.0	49
14	The trafficking and targeting of P2X receptors. Frontiers in Cellular Neuroscience, 2013, 7, 233.	3.7	49
15	Regulation of P2X Purinergic Receptor Signaling by Cholesterol. Current Topics in Membranes, 2017, 80, 211-232.	0.9	43
16	Identification of amino acids within the P2X2receptor C-terminus that regulate desensitization. Journal of Physiology, 1999, 520, 91-99.	2.9	42
17	The Stoichiometry of P2X2/6 Receptor Heteromers Depends on Relative Subunit Expression Levels. Biophysical Journal, 2007, 93, 505-512.	0.5	36
18	P2X4 and lysosome fusion. Current Opinion in Pharmacology, 2019, 47, 126-132.	3.5	31

RUTH D MURRELL-LAGNADO

#	Article	IF	CITATIONS
19	Identification of Regions That Regulate the Expression and Activity of G Protein-Gated Inward Rectifier K+Channels inXenopusOocytes. Journal of Physiology, 1997, 503, 547-562.	2.9	23
20	Novel Insertion Mutation in KCNJ5 Channel Produces Constitutive Aldosterone Release From H295R Cells. Molecular Endocrinology, 2015, 29, 1522-1530.	3.7	19
21	A role for P2X4 receptors in lysosome function. Journal of General Physiology, 2018, 150, 185-187.	1.9	16
22	P2x4 receptor promotes mammary cancer progression by sustaining autophagy and associated mesenchymal transition. Oncogene, 2022, 41, 2920-2931.	5.9	15
23	Atomic force microscopy (AFM) imaging suggests that stromal interaction molecule 1 (STIM1) binds to Orai1 with sixfold symmetry. FEBS Letters, 2014, 588, 2874-2880.	2.8	14
24	A challenge finding P2X1 and P2X4 ligands. Neuropharmacology, 2019, 157, 107674.	4.1	7
25	P2X4 Receptors Mediate Ca2+ Release from Lysosomes in Response to Stimulation of P2X7 and H1 Histamine Receptors. International Journal of Molecular Sciences, 2021, 22, 10492.	4.1	6
26	More crossâ€ŧalk between purinergic receptors. Journal of Physiology, 2009, 587, 2713-2714.	2.9	3
27	AFM Imaging Reveals the Assembly of a P2X Receptor Complex Containing P2X2, P2X4 and P2X6 Subunits. Biophysical Journal, 2012, 102, 336a.	0.5	0
28	Sigma1 receptors inhibit store-operated Ca2+ entry by attenuating coupling of STIM1 to Orai1. Journal of General Physiology, 2016, 147, 1475OIA26.	1.9	0