

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8494744/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-Temperature Catalytic CO ₂ Dry Reforming of Methane on Ni-Si/ZrO ₂ Catalyst. ACS Catalysis, 2018, 8, 6495-6506.	11.2	220
2	Iron doped effects on active sites formation over activated carbon supported Mn-Ce oxide catalysts for low-temperature SCR of NO. Chemical Engineering Journal, 2020, 379, 122398.	12.7	195
3	In situ IR comparative study on N2O formation pathways over different valence states manganese oxides catalysts during NH3–SCR of NO. Chemical Engineering Journal, 2020, 397, 125446.	12.7	131
4	Comparative study on the promotion effect of Mn and Zr on the stability of Ni/SiO2 catalyst for CO2 reforming of methane. International Journal of Hydrogen Energy, 2013, 38, 7268-7279.	7.1	76
5	Promotional effects of nitrogen doping on catalytic performance over manganese-containing semi-coke catalysts for the NH3-SCR at low temperatures. Journal of Hazardous Materials, 2020, 387, 121704.	12.4	65
6	A novel mesoporous zeolite-activated carbon composite as an effective adsorbent for removal of ammonia-nitrogen and methylene blue from aqueous solution. Bioresource Technology, 2018, 268, 726-732.	9.6	64
7	Synthesis Gas Production via Dry Reforming of Methane over Manganese Promoted Nickel/Cerium–Zirconium Oxide Catalyst. Industrial & Engineering Chemistry Research, 2018, 57, 16645-16656.	3.7	57
8	Effect of Al ₂ O ₃ , MgO, and CaO/SiO ₂ on Viscosity of High Alumina Blast Furnace Slag. Steel Research International, 2016, 87, 241-249.	1.8	55
9	Low-temperature selective catalytic reduction of NOx with NH3 over zeolite catalysts: A review. Chinese Chemical Letters, 2020, 31, 2549-2555.	9.0	50
10	Promotional effect of Ce on the SCR of NO with NH3 at low temperature over MnO x supported by nitric acid-modified activated carbon. Research on Chemical Intermediates, 2018, 44, 1729-1744.	2.7	43
11	Utilization of industrial waste lithium-silicon-powder for the fabrication of novel nap zeolite for aqueous Cu(II) removal. Journal of Cleaner Production, 2020, 265, 121822.	9.3	41
12	Insight into N2O Formation Over Different Crystal Phases of MnO2 During Low-Temperature NH3–SCR of NO. Catalysis Letters, 2021, 151, 2964-2971.	2.6	38
13	Precipitation behavior of perovskite and anosovite crystals from high Ti-bearing blast furnace slag with small amount of B ₂ O ₃ . CrystEngComm, 2016, 18, 1393-1402.	2.6	33
14	Copper Doping Promotion on Ce/CAC-CNT Catalysts with High Sulfur Dioxide Tolerance for Low-Temperature NH ₃ –SCR. ACS Sustainable Chemistry and Engineering, 2021, 9, 987-997.	6.7	28
15	Effects of PbO poisoning on Ce–Mn/AC catalyst for low-temperature selective catalytic reduction of NO with NH3. Journal of Iron and Steel Research International, 2021, 28, 133-139.	2.8	24
16	Poisoning Effect Comparison of ZnCl ₂ and ZnSO ₄ on Mnâ€Ce/AC Catalyst for Lowâ€Temperature SCR of NO. ChemistrySelect, 2020, 5, 9226-9234.	1.5	19
17	Copper Ore-Modified Activated Coke: Highly Efficient and Regenerable Catalysts for the Removal of SO ₂ . Industrial & Engineering Chemistry Research, 2018, 57, 15731-15739.	3.7	18
18	Suitability of pyrolusite as additive to activated coke for lowâ€ŧemperature NO removal. Journal of Chemical Technology and Biotechnology, 2018, 93, 690-697.	3.2	16

Lu Yao

#	Article	IF	CITATIONS
19	Low-cost Mn–Fe/SAPO-34 catalyst from natural ferromanganese ore and lithium-silicon-powder waste for efficient low-temperature NH3-SCR removal of NO. Chemosphere, 2022, 293, 133465.	8.2	16
20	Sintering flue gas desulfurization with different carbon materials modified by microwave irradiation. Journal of Iron and Steel Research International, 2017, 24, 979-984.	2.8	15
21	Low-temperature selective catalytic reduction of NO _x with NH ₃ over an activated carbon-carbon nanotube composite material prepared by <i>in situ</i> method. RSC Advances, 2019, 9, 36658-36663.	3.6	15
22	Removal of SO ₂ from Flue Gas on a Copper-Modified Activated Coke Prepared by a Novel One-Step Carbonization Activation Blending Method. Industrial & Engineering Chemistry Research, 2019, 58, 15693-15700.	3.7	13
23	Synthesis of a Novel Zeolite–Activated Carbon Composite Using Lithium–Silicon-Powder Waste for Ammonia-Nitrogen and Methylene Blue Removal. Industrial & Engineering Chemistry Research, 2020, 59, 14616-14624.	3.7	13
24	Preparation and evaluation of nitrogen-tailored hierarchical meso-/micro-porous activated carbon for CO ₂ adsorption. Environmental Technology (United Kingdom), 2020, 41, 3544-3553.	2.2	12
25	Promotion of manganese extraction and flue gas desulfurization with manganese ore by iron in the anodic solution of electrolytic manganese. Hydrometallurgy, 2021, 199, 105542.	4.3	10
26	Thermal Behavior and Kinetics of Raw/Pyrolytic Wood and Coal Blends during Co-combustion Process. Journal of Iron and Steel Research International, 2016, 23, 917-923.	2.8	9
27	A novel CNTs functionalized CeO2/CNTs–GAC catalyst with high NO conversion and SO2 tolerance for low temperature selective catalytic reduction of NO by NH3. Chemosphere, 2021, 284, 131377.	8.2	8
28	In Situ Growth Synthesis of the CNTs@AC Hybrid Material for Efficient Nitrate-Nitrogen Adsorption. ACS Omega, 2021, 6, 1612-1622.	3.5	7
29	The study on continuous denitrification, desulfurization of pyrolusite/activated coke hybrid catalyst. RSC Advances, 2018, 8, 406-413.	3.6	6
30	Separating Sulfur from Fuel Gas Desulfurization Gypsum with an Oxalic Acid Solution. ACS Omega, 2020, 5, 16932-16939.	3.5	5
31	Removal of manganous dithionate (MnS ₂ O ₆) with MnO ₂ from the desulfurization manganese slurry. RSC Advances, 2020, 10, 1430-1438.	3.6	5
32	Co-blending modification of activated coke using pyrolusite and titanium ore for low-temperature NOx removal. Scientific Reports, 2020, 10, 19455.	3.3	4
33	Bimetallic and Polymetallic Oxide Modification of Activated Coke by a One-Step Blending Method for Highly Efficient SO ₂ Removal. Energy & Fuels, 2020, 34, 7275-7283.	5.1	4
34	Preparation of Manganese Blending-Modified Activated Coke for Flue Gas Desulfurization. ACS Omega, 2021, 6, 30949-30959.	3.5	3
35	The Formation of Manganous Dithionate in the Manganese Oxide Flue Gas Desulfurization. Recent Innovations in Chemical Engineering, 2019, 12, 287-295.	0.4	Ο
36	Manganese Ore-based Wet Flue-Gas Desulfurization: A Review. Recent Innovations in Chemical Engineering, 2020, 13, 180-193.	0.4	0