Stefan Kasapis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8494359/publications.pdf

Version: 2024-02-01

STEEAN KASADIS

#	Article	IF	CITATIONS
1	Physicochemical and functional properties of lentil protein isolates prepared by different drying methods. Food Chemistry, 2011, 129, 1513-1522.	4.2	181
2	Evaluating water activity and glass transition concepts for food stability. Journal of Food Engineering, 2007, 78, 266-271.	2.7	168
3	Evaluation of Different Teas against Starch Digestibility by Mammalian Glycosidases. Journal of Agricultural and Food Chemistry, 2010, 58, 148-154.	2.4	158
4	Interfacial and emulsifying properties of lentil protein isolate. Food Chemistry, 2012, 134, 1343-1353.	4.2	155
5	Molecular and functional characteristics of purified gum from Australian chia seeds. Carbohydrate Polymers, 2016, 136, 128-136.	5.1	153
6	Physicochemical and functional characteristics of lentil starch. Carbohydrate Polymers, 2013, 92, 1484-1496.	5.1	133
7	Composition characterisation and thermal transition of date pits powders. Journal of Food Engineering, 2007, 80, 1-10.	2.7	121
8	Rheological and microstructural characteristics of lentil starch–lentil protein composite pastes and gels. Food Hydrocolloids, 2014, 35, 226-237.	5.6	117
9	Bacterial and plant cellulose modification using ultrasound irradiation. Carbohydrate Polymers, 2009, 77, 280-287.	5.1	114
10	Alginate-based nanocomposite films reinforced with halloysite nanotubes functionalized by alkali treatment and zinc oxide nanoparticles. International Journal of Biological Macromolecules, 2018, 118, 1824-1832.	3.6	96
11	Phase equilibria and gelation in gelatin/maltodextrin systems — Part IV: composition-dependence of mixed-gel moduli. Carbohydrate Polymers, 1993, 21, 269-276.	5.1	94
12	Phase equilibria and gelation in gelatin/maltodextrin systems — Part II: polymer incompatibility in solution. Carbohydrate Polymers, 1993, 21, 249-259.	5.1	92
13	Gelatin vs Polysaccharide in Mixture with Sugar. Biomacromolecules, 2003, 4, 1142-1149.	2.6	90
14	Rheological investigations of the interactions between starch and milk proteins in model dairy systems: A review. Food Hydrocolloids, 2011, 25, 2008-2017.	5.6	90
15	Phase equilibria and gelation in gelatin/maltodextrin systems — Part I: gelation of individual components. Carbohydrate Polymers, 1993, 21, 243-248.	5.1	86
16	Physicochemical properties of flours and starches derived from traditional Indonesian tubers and roots. Journal of Food Science and Technology, 2014, 51, 3669-3679.	1.4	86
17	Phase equilibria and gelation in gelatin/maltodextrin systems — Part III: phase separation in mixed gels. Carbohydrate Polymers, 1993, 21, 261-268.	5.1	84
18	State diagram of tuna meat: freezing curve and glass transition. Journal of Food Engineering, 2003, 57, 321-326.	2.7	84

#	Article	lF	CITATIONS
19	Rheological and microstructural properties of the chia seed polysaccharide. International Journal of Biological Macromolecules, 2015, 81, 991-999.	3.6	80
20	Solution properties of levan polysaccharide from Pseudomonas syringae pv. phaseolicola, and its possible primary role as a blocker of recognition during pathogenesis. Carbohydrate Polymers, 1994, 23, 55-64.	5.1	78
21	Steric exclusion phenomena in gellan/gelatin systems I. Physical properties of single and binary gels. Food Hydrocolloids, 1994, 8, 97-112.	5.6	74
22	Sorption isotherms and the state diagram for evaluating stability criteria of abalone. Food Research International, 2004, 37, 915-924.	2.9	70
23	Testing the validity of comparisons between the rheological and the calorimetric glass transition temperatures. Carbohydrate Research, 2003, 338, 787-794.	1.1	69
24	Phase Separation in Biopolymer Gels: A Low- to High-Solid Exploration of Structural Morphology and Functionality. Critical Reviews in Food Science and Nutrition, 2008, 48, 341-359.	5.4	65
25	Structuring dairy systems through high pressure processing. Journal of Food Engineering, 2013, 114, 106-122.	2.7	64
26	Effect of aging and ice-structuring proteins on the physical properties of frozen flour–water mixtures. Food Hydrocolloids, 2008, 22, 1135-1147.	5.6	61
27	Structural aspects and phase behaviour in deacylated and high acyl gellan systems. Carbohydrate Polymers, 1999, 38, 145-154.	5.1	60
28	Combined spectroscopic, molecular docking and quantum mechanics study of β-casein and p-coumaric acid interactions following thermal treatment. Food Chemistry, 2018, 252, 163-170.	4.2	60
29	Effect of conformation and molecular weight of co-solute on the mechanical properties of gellan gum gels. Food Hydrocolloids, 1998, 12, 283-290.	5.6	58
30	Fluorescent Magnesium(II) Coordination Polymeric Hydrogel. Chemistry - A European Journal, 2008, 14, 8822-8829.	1.7	57
31	Effect of gamma irradiation on the thermal and rheological properties of grain amaranth starch. Radiation Physics and Chemistry, 2009, 78, 954-960.	1.4	56
32	Evaluation of Aroma-Active Compounds in Pontianak Orange Peel Oil (Citrus nobilis Lour. Var.) Tj ETQq0 0 0 rgBT Test. Journal of Agricultural and Food Chemistry, 2009, 57, 239-244.	/Overlock 2.4	10 Tf 50 22 56
33	Combined spectroscopic and molecular docking study on the pH dependence of molecular interactions between 1²-lactoglobulin and ferulic acid. Food Hydrocolloids, 2020, 101, 105461.	5.6	56
34	Pumpkin pectin: gel formation at unusually low concentration. Carbohydrate Polymers, 1994, 23, 265-273.	5.1	55
35	Effect of Aging and Ice Structuring Proteins on the Morphology of Frozen Hydrated Gluten Networks. Biomacromolecules, 2007, 8, 1293-1299.	2.6	55
36	Recent Advances and Future Challenges in the Explanation and Exploitation of the Network Glass Transition of High Sugar/Biopolymer Mixtures. Critical Reviews in Food Science and Nutrition, 2008, 48, 185-203.	5.4	54

#	Article	IF	CITATIONS
37	Effect of whey protein agglomeration on spray dried microcapsules containing Saccharomyces boulardii. Food Chemistry, 2013, 141, 1782-1788.	4.2	54
38	Structural properties of single and mixed milk/soya protein systems. Food Hydrocolloids, 1993, 7, 459-478.	5.6	53
39	Characterization of volatile compounds in selected citrus fruits from Asia. Part I: freshly-squeezed juice. Flavour and Fragrance Journal, 2007, 22, 228-232.	1.2	53
40	Structural enhancement leading to retardation of in vitro digestion of rice dough in the presence of alginate. Food Hydrocolloids, 2009, 23, 1458-1464.	5.6	53
41	Rheological properties of starches from grain amaranth and their relationship to starch structure. Starch/Staerke, 2010, 62, 302-308.	1.1	53
42	Rubber-to-glass transitions in high sugar/biopolymer mixtures. Trends in Food Science and Technology, 2004, 15, 298-304.	7.8	52
43	Vitrification of κ-carrageenan in the presence of high levels of glucose syrup. Polymer, 1998, 39, 3909-3917.	1.8	51
44	Glass-transition behaviour of plasticized starch biopolymer system – A modified Gordon–Taylor approach. Food Hydrocolloids, 2011, 25, 114-121.	5.6	51
45	Evaluating the quality and storage stability of fish burgers during frozen storage. Fisheries Science, 2005, 71, 648-654.	0.7	50
46	Definition and applications of the network glass transition temperature. Food Hydrocolloids, 2006, 20, 218-228.	5.6	50
47	Combined spectroscopic, molecular docking and quantum mechanics study of β-casein and ferulic acid interactions following UHT-like treatment. Food Hydrocolloids, 2019, 89, 351-359.	5.6	50
48	Physical characterization of thermally induced networks of lupin protein isolates prepared by isoelectric precipitation and dialysis. International Journal of Food Science and Technology, 1999, 34, 253-263.	1.3	49
49	Definition of the rheological glass transition temperature in association with the concept of iso-free-volume. International Journal of Biological Macromolecules, 2001, 29, 315-321.	3.6	49
50	Glass Transition Phenomena in Dehydrated Model Systems and Foods: A Review. Drying Technology, 2005, 23, 731-757.	1.7	48
51	Thermal transitions of rice: Development of a state diagram. Journal of Food Engineering, 2009, 90, 110-118.	2.7	47
52	Lupin protein: Isolation and techno-functional properties, a review. Food Hydrocolloids, 2021, 112, 106318.	5.6	47
53	State Diagram of Temperature vs Date Solids Obtained from the Mature Fruit. Journal of Agricultural and Food Chemistry, 2000, 48, 3779-3784.	2.4	45
54	Honey and Its Role in Relieving Multiple Facets of Atherosclerosis. Nutrients, 2019, 11, 167.	1.7	45

#	Article	IF	CITATIONS
55	A fundamental approach for the estimation of the mechanical glass transition temperature in gelatin. International Journal of Biological Macromolecules, 2005, 36, 71-78.	3.6	44
56	Formation of kinetically trapped gels in the maltodextrin—gelatin system. Carbohydrate Research, 1996, 293, 79-99.	1.1	43
57	Development of composite structures in the gellan polysaccharide/sugar system. Carbohydrate Polymers, 1997, 33, 39-46.	5.1	43
58	The rubber-to-glass transition in high sugar agarose systems. Biopolymers, 1999, 49, 267-275.	1.2	43
59	Bridging the Divide between the High- and Low-Solid Analyses in the Gelatin/κ-Carrageenan Mixture. Biomacromolecules, 2005, 6, 14-23.	2.6	43
60	Molecular weight and crystallinity alteration of cellulose via prolonged ultrasound fragmentation. Food Hydrocolloids, 2012, 26, 365-369.	5.6	42
61	Colour change and proteolysis of skim milk during high pressure thermal–processing. Journal of Food Engineering, 2015, 147, 102-110.	2.7	42
62	Molecular weight effects on the glass transition of gelatin/cosolute mixtures. Biopolymers, 2003, 70, 169-185.	1.2	41
63	Glassy-state phenomena in gellan-sucrose-corn syrup mixtures. Carbohydrate Polymers, 1994, 25, 101-109.	5.1	40
64	Effect of barley β-glucan concentration on the microstructural and mechanical behaviour of acid-set sodium caseinate gels. Food Hydrocolloids, 2006, 20, 749-756.	5.6	39
65	Gelation and phase separation in maltodextrin-caseinate systems. Food Hydrocolloids, 1996, 10, 407-420.	5.6	38
66	Phase behaviour and in vitro hydrolysis of wheat starch in mixture with whey protein. Food Chemistry, 2013, 137, 76-82.	4.2	38
67	Microencapsulation of fish oil with alginate: In-vitro evaluation and controlled release. LWT - Food Science and Technology, 2018, 90, 310-315.	2.5	38
68	The glass transition zone in high solids pectin and gellan preparations. Polymer, 1997, 38, 5685-5694.	1.8	37
69	Physicochemical and structural characteristics of starches from Chinese hullâ€less barley cultivars. International Journal of Food Science and Technology, 2016, 51, 509-518.	1.3	37
70	A rheological study on the application of carbohydrate-protein incompatibility to the development of low fat commercial spreads. Carbohydrate Polymers, 1995, 28, 367-373.	5.1	36
71	Structural properties of pectin-gelatin gels. Part II: effect of sucrose/glucose syrup. Carbohydrate Polymers, 1997, 34, 309-321.	5.1	36
72	Effect of sugars on the mechanical and thermal properties of agarose gels. Food Hydrocolloids, 2003, 17, 793-799.	5.6	36

#	Article	IF	CITATIONS
73	Cold plasma: Microbial inactivation and effects on quality attributes of fresh and minimally processed fruits and Ready-To-Eat vegetables. Trends in Food Science and Technology, 2021, 116, 146-175.	7.8	36
74	Structural and textural properties of calcium induced, hot-made alginate gels. Carbohydrate Polymers, 1994, 24, 199-207.	5.1	35
75	Structural modification in condensed soy glycinin systems following application of high pressure. Food Hydrocolloids, 2016, 53, 115-124.	5.6	35
76	Sequence-dependent kinetic trapping of biphasic structures in maltodextrin-whey protein gels. Carbohydrate Polymers, 1997, 32, 141-153.	5.1	34
77	Rheological methods in the characterisation of food biopolymers. Developments in Food Science, 1998, 39, 1-48.	0.0	34
78	Rheological investigation of the structural properties and aging effects in the agarose/co-solute mixture. Carbohydrate Polymers, 2003, 53, 85-93.	5.1	34
79	Morphology and Mechanical Properties of Bicontinuous Gels of Agarose and Gelatin and the Effect of Added Lipid Phase. Langmuir, 2009, 25, 8763-8773.	1.6	34
80	Structural properties of condensed ovalbumin systems following application of high pressure. Food Hydrocolloids, 2016, 53, 104-114.	5.6	34
81	Controlled release of ascorbic acid from genipin-crosslinked gelatin matrices under moving boundary conditions. Food Hydrocolloids, 2019, 89, 171-179.	5.6	34
82	Influence of acid hydrolysis on thermal and rheological properties of amaranth starches varying in amylose content. Journal of the Science of Food and Agriculture, 2012, 92, 1800-1807.	1.7	33
83	Definition of a Mechanical Glass Transition Temperature for Dehydrated Foods. Journal of Agricultural and Food Chemistry, 2004, 52, 2262-2268.	2.4	32
84	Diffusion and relaxation contributions in the release of vitamin B6 from a moving boundary of genipin crosslinked gelatin matrices. Food Hydrocolloids, 2019, 87, 839-846.	5.6	32
85	Effect of low frequency ultrasound on the functional characteristics of isolated lupin protein. Food Hydrocolloids, 2022, 124, 107345.	5.6	32
86	The use of Arrhenius and WLF kinetics to rationalise the mechanical spectrum in high sugar gellan systems. Carbohydrate Research, 1998, 309, 353-361.	1.1	31
87	Advanced topics in the application of the WLF/free volume theory to high sugar/biopolymer mixtures: a review. Food Hydrocolloids, 2001, 15, 631-641.	5.6	31
88	The influence of chitosan on the structural properties of whey protein and wheat starch composite systems. Food Chemistry, 2015, 179, 60-67.	4.2	31
89	The effect of added sucrose and corn syrup on the physical properties of gellan—gelatin mixed gels. Food Hydrocolloids, 1995, 9, 211-220.	5.6	30
90	CHARACTERISATION OF A COMMERCIAL SOY ISOLATE BY PHYSICAL TECHNIQUES. Journal of Texture Studies, 1995, 26, 371-389.	1.1	29

#	Article	IF	CITATIONS
91	Small deformation rheological properties of maltodextrin—milk protein systems. Carbohydrate Polymers, 1996, 29, 137-148.	5.1	29
92	SMALL DEFORMATION MEASUREMENTS OF SINGLE AND MIXED GELS OF LOW CHOLESTEROL YOLK AND EGG WHITE. Journal of Texture Studies, 2000, 31, 225-244.	1.1	29
93	Instrumental-sensory evaluation of texture for fish sausage and its storage stability. Fisheries Science, 2007, 73, 1166-1176.	0.7	29
94	WATER SORPTION ISOTHERMS AND GLASS TRANSITION PROPERTIES OF GELATIN. Drying Technology, 2002, 20, 2081-2092.	1.7	28
95	Relation between the structure of matrices and their mechanical relaxation mechanisms during the glass transition of biomaterials: A review. Food Hydrocolloids, 2012, 26, 464-472.	5.6	28
96	Effect of calcium chloride on the structure and inÂvitro hydrolysis of heat induced whey protein and wheat starch composite gels. Food Hydrocolloids, 2014, 42, 260-268.	5.6	28
97	Molecular Order versus Vitrification in High-Sugar Blends of Gelatin and κ-Carrageenan. Journal of Agricultural and Food Chemistry, 1999, 47, 4944-4949.	2.4	27
98	Microbial, chemical and rheological properties of laban (cultured milk). International Journal of Food Science and Technology, 2001, 36, 199-205.	1.3	26
99	Porosity and the Effect of Structural Changes on the Mechanical Glass Transition Temperature. Journal of Agricultural and Food Chemistry, 2007, 55, 2459-2466.	2.4	26
100	SMALL DEFORMATION PROPERTIES OF MODEL SALAD DRESSINGS PREPARED WITH REDUCED CHOLESTEROL EGG YOLK. Journal of Texture Studies, 1997, 28, 221-237.	1.1	25
101	Glass transition-related or crystalline forms in the structural properties of gelatin/oxidised starch/glucose syrup mixtures. Food Hydrocolloids, 1998, 12, 273-281.	5.6	25
102	Further evidence of the changing nature of biopolymer networks in the presence of sugar. Carbohydrate Research, 2005, 340, 771-774.	1.1	25
103	Release mechanism of omega-3 fatty acid in κ-carrageenan/polydextrose undergoing glass transition. Carbohydrate Polymers, 2015, 126, 141-149.	5.1	25
104	Effect of salt on the glass transition of condensed tapioca starch systems. Food Chemistry, 2017, 229, 120-126.	4.2	25
105	Building on the WLF/Free Volume Framework:Â Utilization of the Coupling Model in the Relaxation Dynamics of the Gelatin/Cosolute System. Biomacromolecules, 2006, 7, 1671-1678.	2.6	24
106	Rheological investigation and molecular architecture of highly hydrated gluten networks at subzero temperatures. Journal of Food Engineering, 2008, 89, 42-48.	2.7	24
107	Influence of pH on mechanical relaxations in high solids LM-pectin preparations. Carbohydrate Polymers, 2015, 127, 182-188.	5.1	24
108	Alginate-based encapsulation of extracts from beta Vulgaris cv. beet greens: Stability and controlled release under simulated gastrointestinal conditions. LWT - Food Science and Technology, 2018, 93, 442-449.	2.5	24

#	Article	IF	CITATIONS
109	Physicochemical and viscoelastic properties of honey from medicinal plants. Food Chemistry, 2018, 241, 143-149.	4.2	24
110	Critical issues encountered in the analysis of protein-phenolic binding interactions via fluorescence spectroscopy. Food Hydrocolloids, 2022, 124, 107219.	5.6	24
111	Viscous solutions, networks and the glass transition in high sugar galactomannan and \hat{l}^2 -carrageenan mixtures. International Journal of Biological Macromolecules, 2000, 27, 13-20.	3.6	23
112	MICROBIOLOGICAL, PHYSICOCHEMICAL, AND BIOCHEMICAL CHANGES DURING RIPENING OF CAMEMBERT CHEESE MADE OF PASTEURIZED COW'S MILK. International Journal of Food Properties, 2002, 5, 483-494.	1.3	23
113	Functional and Structural Properties of 2S Soy Protein in Relation to Other Molecular Protein Fractions. Journal of Agricultural and Food Chemistry, 2006, 54, 6046-6053.	2.4	23
114	Hydrostatic pressure effects on the structural properties of condensed whey protein/lactose systems. Food Hydrocolloids, 2013, 30, 632-640.	5.6	23
115	Modification of the structural and rheological properties of whey protein/gelatin mixtures through high pressure processing. Food Chemistry, 2014, 156, 243-249.	4.2	22
116	Structural behaviour in condensed bovine serum albumin systems following application of high pressure. Food Chemistry, 2014, 150, 469-476.	4.2	21
117	Effect of sodium chloride on the glass transition of condensed starch systems. Food Chemistry, 2015, 184, 65-71.	4.2	21
118	Calcium chloride effects on the glass transition of condensed systems of potato starch. Food Chemistry, 2016, 199, 791-798.	4.2	21
119	Dynamic oscillation measurements of starch networks at temperatures above 100 °C. Carbohydrate Research, 2000, 329, 179-187.	1.1	20
120	Numerical computation of relaxation spectra from mechanical measurements in biopolymers. Food Research International, 2009, 42, 130-136.	2.9	20
121	Novel sulfation of curdlan assisted by ultrasonication. International Journal of Biological Macromolecules, 2010, 46, 385-388.	3.6	20
122	APPLICATION OF STRESS-CONTROLLED ANALYSIS TO THE DEVELOPMENT OF LOW FAT SPREADS. Journal of Texture Studies, 1997, 28, 319-335.	1.1	19
123	Separation of the variables of time and temperature in the mechanical properties of high sugar/polysaccharide mixtures. Biopolymers, 2000, 53, 40-45.	1.2	19
124	Viscoelastic properties of pectin–co-solute mixtures at iso-free-volume states. Carbohydrate Research, 2000, 329, 399-407.	1.1	19
125	Characterization of Volatile Compounds in Selected Citrus Fruits from Asia—Part II: Peel Oil. Journal of Essential Oil Research, 2008, 20, 21-24.	1.3	19
126	Unexpected high pressure effects on the structural properties of condensed whey protein systems. Biopolymers, 2012, 97, 963-973.	1.2	19

#	Article	IF	CITATIONS
127	Effect of high pressure processing on rheological and structural properties of milk–gelatin mixtures. Food Chemistry, 2013, 141, 1328-1334.	4.2	19
128	The use of Arrhenius and WLF kinetics to rationalise the rubber-to-glass transition in high sugar/κ-carrageenan systems. Food Hydrocolloids, 2001, 15, 239-245.	5.6	18
129	High sugar/polysaccharide glasses: resolving the role of water molecules in structure formation. International Journal of Biological Macromolecules, 2002, 30, 279-282.	3.6	18
130	Developing Minced Fish Products of Improved Eating Quality: An Interplay of Instrumental and Sensory Texture. International Journal of Food Properties, 2009, 12, 11-26.	1.3	18
131	Combined Use of Thermomechanics and UV Spectroscopy To Rationalize the Kinetics of Bioactive Compound (Caffeine) Mobility in a High Solids Matrix. Journal of Agricultural and Food Chemistry, 2010, 58, 3825-3832.	2.4	18
132	Thermomechanical study of the phase behaviour of agarose/gelatin mixtures in the presence of glucose syrup as co-solute. Food Chemistry, 2011, 127, 1784-1791.	4.2	18
133	Effect of polymer molecular weight on the structural properties of non aqueous ethyl cellulose gels intended for topical drug delivery. Carbohydrate Polymers, 2012, 88, 382-388.	5.1	18
134	Effect of frozen storage on the characteristics of a developed and commercial fish sausages. Journal of Food Science and Technology, 2013, 50, 1158-1164.	1.4	18
135	Effect of low-frequency ultrasound on the particle size, solubility and surface charge of reconstituted sodium caseinate. Ultrasonics Sonochemistry, 2019, 58, 104525.	3.8	18
136	Binding parameters and molecular dynamics of β-lactoglobulin-vanillic acid complexation as a function of pH – Part A: Acidic pH. Food Chemistry, 2021, 360, 130059.	4.2	18
137	Biochemical and thermo-mechanical analysis of collagen from the skin of Asian Sea bass (Lates) Tj ETQq1 1 0.784 European Food Research and Technology, 2013, 236, 873-882.	4314 rgBT 1.6	/Overlock 10 17
138	Consistency of UHT beverages enriched with insoluble fibre during storage. Bioactive Carbohydrates and Dietary Fibre, 2014, 4, 84-92.	1.5	17
139	Proteinâ€loaded sodium alginate and carboxymethyl cellulose beads for controlled release under simulated gastrointestinal conditions. International Journal of Food Science and Technology, 2017, 52, 2171-2179.	1.3	17
140	Classification of hydrocolloids based on small amplitude oscillatory shear, large amplitude oscillatory shear, and textural properties. Journal of Texture Studies, 2019, 50, 520-538.	1.1	17
141	Swelling behaviour and glass transition in genipin-crosslinked chitosan systems. International Journal of Biological Macromolecules, 2020, 164, 3075-3083.	3.6	17
142	Food applications of biopolymer—theory and practice. Developments in Food Science, 1995, 37, 75-109.	0.0	16
143	The thermal kinetics of starch gelatinization in the presence of other cake ingredients. International Journal of Food Science and Technology, 2004, 39, 807-810.	1.3	16
144	Glass Transition and Water Activity of Freeze-Dried Shark. Drying Technology, 2006, 24, 1003-1009.	1.7	16

#	Article	IF	CITATIONS
145	Morphology of Molecular Soy Protein Fractions in Binary Composite Gels. Langmuir, 2009, 25, 8538-8547.	1.6	16
146	Controlled release of thiamin in a glassy κ-carrageenan/glucose syrup matrix. Carbohydrate Polymers, 2015, 115, 723-731.	5.1	16
147	Diffusion of nicotinic acid in spray-dried capsules of whey protein isolate. Food Hydrocolloids, 2016, 52, 811-819.	5.6	16
148	The role of structural relaxation in governing the mobility of linoleic acid in condensed whey protein matrices. Food Hydrocolloids, 2018, 76, 184-193.	5.6	16
149	Structural variation in gelatin networks from low to high-solid systems effected by honey addition. Food Research International, 2019, 121, 319-325.	2.9	16
150	Molecular dynamics of the diffusion of natural bioactive compounds from high-solid biopolymer matrices for the design of functional foods. Food Hydrocolloids, 2019, 88, 301-319.	5.6	16
151	Decoupling diffusion and macromolecular relaxation in the release of vitamin B6 from genipin-crosslinked whey protein networks. Food Chemistry, 2021, 346, 128886.	4.2	16
152	Tangible evidence of the tranformation from enthalpic to entropic gellan networks at high levels of co-solute. Carbohydrate Polymers, 2002, 50, 259-262.	5.1	15
153	Direct imaging of the changing polysaccharide network at high levels of co-solute. Carbohydrate Polymers, 2005, 61, 379-382.	5.1	15
154	Development of a Date Confectionery: Part 1. Relating Formulation to Instrumental Texture. International Journal of Food Properties, 2005, 8, 457-468.	1.3	15
155	Ripening Profile of Semi-Hard Standard Goat Cheese Made From Pasteurized Milk. International Journal of Food Properties, 2006, 9, 523-532.	1.3	15
156	Isobaric and isothermal kinetics of gelatinization of waxy maize starch. Journal of Food Engineering, 2007, 82, 443-449.	2.7	15
157	Phase behaviour of oat β-glucan/sodium caseinate mixtures varying in molecular weight. Food Chemistry, 2013, 138, 630-637.	4.2	15
158	High pressure effects on the structural functionality of condensed globular-protein matrices. International Journal of Biological Macromolecules, 2016, 88, 433-442.	3.6	15
159	Effect of hydrogel particle size embedded into oleogels on the physico-functional properties of hydrogel-in-oleogel (bigels). LWT - Food Science and Technology, 2022, 163, 113501.	2.5	15
160	α and β Mechanical dispersions in high sugar/acyl gellan mixtures. International Journal of Biological Macromolecules, 2001, 29, 151-160.	3.6	14
161	Effect of high hydrostatic pressure on the structural properties and bioactivity ofÂimmunoglobulins extracted from whey protein. Food Hydrocolloids, 2013, 32, 286-293.	5.6	14
162	Modeling water partition in composite gels of BSA with gelatin following thermal treatment. Food Hydrocolloids, 2018, 76, 141-149.	5.6	14

#	Article	IF	CITATIONS
163	High-temperature binding parameters and molecular dynamics of 4-hydroxybenzoic acid and β-casein complexes, determined via the method of continuous variation and fluorescence spectroscopy. Food Hydrocolloids, 2021, 114, 106567.	5.6	14
164	Influence of reduced-cholesterol yolk on the viscoelastic behaviour of concentrated O/W emulsions. Colloids and Surfaces B: Biointerfaces, 1999, 12, 107-111.	2.5	13
165	Scientific and Technological Aspects of Fish Product Development. Part I: Handshaking Instrumental Texture with Consumer Preference in Burgers. International Journal of Food Properties, 2004, 7, 449-462.	1.3	13
166	Temperature dependence of relaxation spectra for highly hydrated gluten networks. Journal of Cereal Science, 2010, 52, 100-105.	1.8	13
167	Segregative phase separation in agarose/whey protein systems induced by sequence-dependent trapping and change in pH. Carbohydrate Polymers, 2012, 87, 2100-2108.	5.1	13
168	Hydrocolloid clustering based on their rheological properties. Journal of Texture Studies, 2018, 49, 619-638.	1.1	13
169	Disentangling α from β mechanical relaxations in the rubber-to-glass transition of high-sugar–chitosan mixtures. Carbohydrate Research, 2002, 337, 595-605.	1.1	12
170	The effect of pressure on the glass transition of biopolymer/co-solute. International Journal of Biological Macromolecules, 2007, 40, 491-497.	3.6	12
171	Kinetics of a Bioactive Compound (Caffeine) Mobility at the Vicinity of the Mechanical Glass Transition Temperature Induced by Gelling Polysaccharide. Journal of Agricultural and Food Chemistry, 2011, 59, 11825-11832.	2.4	12
172	Studies on the viability of Saccharomyces boulardii within microcapsules in relation to the thermomechanical properties of whey protein. Food Hydrocolloids, 2014, 42, 232-238.	5.6	12
173	A free-volume interpretation of the decoupling parameter in bioactive-compound diffusion from a glassy polymer. Food Hydrocolloids, 2016, 54, 338-341.	5.6	12
174	Effect of the glass transition temperature on alpha-amylase activity in a starch matrix. Carbohydrate Polymers, 2017, 157, 1531-1537.	5.1	12
175	Quantitative analysis of the phase volume of agarose-canola oil gels in comparison to blending law predictions using 3D imaging based on confocal laser scanning microscopy. Food Research International, 2019, 125, 108529.	2.9	12
176	Molecular weight effects on the gelatin/maltodextrin gel. Carbohydrate Polymers, 1999, 40, 83-87.	5.1	11
177	Structure, sensory and nutritional aspects of soluble-fibre inclusion in processed food products. Food Hydrocolloids, 2011, 25, 159-164.	5.6	11
178	Temperature and time effects on the structural properties of a non-aqueous ethyl cellulose topical drug delivery system. Carbohydrate Polymers, 2011, 86, 644-651.	5.1	11
179	Phase behaviour of gelatin/polydextrose mixtures at high levels of solids. Food Chemistry, 2012, 134, 1938-1946.	4.2	11
180	Diffusion kinetics of ascorbic acid in a glassy matrix of high-methoxy pectin with polydextrose. Food Hydrocolloids, 2016, 53, 293-302.	5.6	11

#	Article	IF	CITATIONS
181	Molecular interactions of milk protein with phenolic components in oatâ€based liquid formulations following UHT treatment and prolonged storage. Journal of the Science of Food and Agriculture, 2018, 98, 1794-1802.	1.7	11
182	Structural relaxation and glass transition in high-solid gelatin systems crosslinked with genipin. International Journal of Biological Macromolecules, 2019, 141, 867-875.	3.6	11
183	Dairy protein–ligand interactions upon thermal processing and targeted delivery for the design of functional foods. Current Opinion in Food Science, 2019, 27, 8-17.	4.1	11
184	Hydrophobins and chaplins: Novel bio-surfactants for food dispersions a review. Trends in Food Science and Technology, 2021, 111, 378-387.	7.8	11
185	Binding parameters and molecular dynamics of β-lactoglobulin-vanillic acid complexation as a function of pH - part B: Neutral pH. Food Chemistry, 2022, 367, 130655.	4.2	11
186	Diffusional characteristics of food protein-based materials as nutraceutical delivery systems: A review. Trends in Food Science and Technology, 2022, 122, 201-210.	7.8	11
187	Structural properties of gelatin—pectin gels. Part I: Effect of ethylene glycol. Food Hydrocolloids, 1997, 11, 271-279.	5.6	10
188	The elastic moduli of the microcrystalline cellulose–gelatin blends. Food Hydrocolloids, 1999, 13, 543-546.	5.6	10
189	Application of the synthetic polymer approach to the glass transition of fruit leathers. Journal of Food Engineering, 2008, 86, 243-250.	2.7	10
190	Combined use of the free volume and coupling theories in the glass transition of polysaccharide/co-solute systems. Carbohydrate Polymers, 2011, 83, 926-933.	5.1	10
191	Structural studies on matrices of deacylated gellan with polydextrose. Food Chemistry, 2013, 137, 37-44.	4.2	10
192	Fundamental studies on the structural functionality of whey protein isolate in the presence of small polyhydroxyl compounds as co-solute. Food Chemistry, 2013, 139, 420-425.	4.2	10
193	Physicochemical properties of wheat-canna and wheat-konjac composite flours. Journal of Food Science and Technology, 2014, 51, 1784-1794.	1.4	10
194	Tocopheryl acetate release from microcapsules of waxy maize starch. Carbohydrate Polymers, 2017, 167, 27-35.	5.1	10
195	Molecular characterisation of hot moulded alginate gels as a delivery vehicle for the release of entrapped caffeine. Food Hydrocolloids, 2020, 109, 106142.	5.6	10
196	Molecular Functionality of Plant Proteins from Low- to High-Solid Systems with Ligand and Co-Solute. International Journal of Molecular Sciences, 2020, 21, 2550.	1.8	10
197	RHEOLOGICAL AND SENSORY PROPERTIES OF POPULAR GREEK FOODSTUFFS: A REVIEW. International Journal of Food Properties, 2001, 4, 327-340.	1.3	9
198	Viscoelasticity of oxidized starch/low methoxy pectin mixtures in the presence of glucose syrup. International Journal of Food Science and Technology, 2002, 37, 403-413.	1.3	9

#	Article	IF	CITATIONS
199	Unexpected Phase Behavior of Amylose in a High Solids Environment. Biomacromolecules, 2010, 11, 421-429.	2.6	9
200	Preservation of oleic acid entrapped in a condensed matrix of high-methoxy pectin with glucose syrup. Food Hydrocolloids, 2016, 53, 284-292.	5.6	9
201	Mechanistic interpretation of vitamin B6 transport from swelling matrices of genipin-crosslinked gelatin, BSA and WPI. Food Hydrocolloids, 2022, 123, 107195.	5.6	9
202	Development of a Date Confectionery: Part 2. Relating Instrumental Texture to Sensory Evaluation. International Journal of Food Properties, 2006, 9, 365-375.	1.3	8
203	Effect of hydration on the structure of non aqueous ethyl cellulose/propylene glycol dicaprylate gels. International Journal of Biological Macromolecules, 2012, 50, 385-392.	3.6	8
204	Analysis on the effectiveness of co-solute on the network integrity of high methoxy pectin. Food Chemistry, 2012, 135, 1455-1462.	4.2	8
205	Effect of co-solute concentration on the diffusion of linoleic acid from whey protein matrices. Food Hydrocolloids, 2017, 70, 277-285.	5.6	8
206	Morphology of genipin-crosslinked BSA networks yields a measurable effect on the controlled release of vitamin B6. Food Chemistry, 2020, 314, 126204.	4.2	8
207	Textural properties of a model aqueous phase in low fat products. Part 1: Alginate, caseinate and starch in isolation, and in starch containing binary mixtures. International Journal of Food Science and Technology, 2000, 35, 215-226.	1.3	7
208	First- and second-approximation calculations in the relaxation function of high-sugar/polysaccharide systems. International Journal of Biological Macromolecules, 2000, 27, 301-305.	3.6	7
209	The effect of pressure on the structural properties of biopolymer/co-solute. Part II: The example of gelling polysaccharides. Carbohydrate Polymers, 2008, 72, 537-544.	5.1	7
210	Effect of a glassy gellan/polydextrose matrix on the activity of α-d-glucosidase. Carbohydrate Polymers, 2013, 95, 389-396.	5.1	7
211	Modeling and fundamental aspects of structural relaxation in high-solid hydrocolloid systems. Food Hydrocolloids, 2017, 68, 232-237.	5.6	7
212	Effect of ultra high temperature processing and storage conditions on phenolic acid, avenanthramide, free fatty acid and volatile profiles from Australian oat grains. Bioactive Carbohydrates and Dietary Fibre, 2018, 15, 21-29.	1.5	7
213	The effect of trisodium phosphate crosslinking on the diffusion kinetics of caffeine from chitosan networks. Food Chemistry, 2022, 381, 132272.	4.2	7
214	CRITICAL ASSESSMENT OF THE APPLICATION OF THE WLF/FREE VOLUME THEORY TO THE STRUCTURAL PROPERTIES OF HIGH SOLIDS SYSTEMS: A REVIEW. International Journal of Food Properties, 2001, 4, 59-79.	1.3	6
215	Investigation on the phase behaviour of gelatin/agarose mixture in an environment of reduced solvent quality. Food Chemistry, 2013, 136, 835-842.	4.2	6
216	In-vitro starch hydrolysis of chitosan incorporating whey protein and wheat starch composite gels. Heliyon, 2017, 3, e00421.	1.4	6

#	Article	IF	CITATIONS
217	Physicochemical properties, digestibility and expected glycaemic index of high amylose rice differing in lengthâ€width ratio in Sri Lanka. International Journal of Food Science and Technology, 2020, 55, 74-81.	1.3	6
218	A New Approach to Distinguish Thixotropic and Viscoelastic Phenomena. Food Biophysics, 2020, 15, 72-84.	1.4	6
219	Mechanical versus calorimetric glass transition temperature in the diffusion of nicotinic acid from a condensed gelatin/glucose syrup system. Food Hydrocolloids, 2020, 109, 106046.	5.6	6
220	Physicochemical Properties and Effects of Honeys on Key Biomarkers of Oxidative Stress and Cholesterol Homeostasis in HepG2 Cells. Nutrients, 2021, 13, 151.	1.7	6
221	Modelling the mechanism and kinetics of ascorbic acid diffusion in genipin-crosslinked gelatin and chitosan networks at distinct pH. Food Bioscience, 2022, 46, 101579.	2.0	6
222	Networks of polysaccharides with hydrophilic and hydrophobic characteristics in the presence of co-solute. International Journal of Biological Macromolecules, 2012, 51, 138-145.	3.6	5
223	Effect of thermal denaturation on the mechanical glass transition temperature of globular protein/co-solute systems. Food Hydrocolloids, 2014, 41, 156-163.	5.6	5
224	Inactivation of bacterial proteases and foodborne pathogens in condensed globular proteins following application of high pressure. Food Hydrocolloids, 2014, 42, 244-250.	5.6	5
225	Modeling water partition in composite gels of BSA with gelatin following high pressure treatment. Food Chemistry, 2018, 265, 32-38.	4.2	5
226	Release profile of vitamin B6 from a pH-responsive BSA network crosslinked with genipin. LWT - Food Science and Technology, 2020, 128, 109458.	2.5	5
227	A Recent Advance In The Application of Blending Laws in Mixed Biopolymer Systems. International Journal of Polymer Analysis and Characterization, 1995, 1, 99-118.	0.9	4
228	Beyond the free volume theory: Introduction of the concept of cooperativity to the chain dynamics of biopolymers during vitrification. Food Hydrocolloids, 2008, 22, 84-90.	5.6	4
229	Orientation of short microcrystalline cellulose fibers in a gelatin matrix. Food Hydrocolloids, 2011, 25, 1402-1405.	5.6	4
230	Fundamental considerations in the effect of molecular weight on the glass transition of the gelatin/cosolute system. Biopolymers, 2012, 97, 303-310.	1.2	4
231	Modeling counterion partition in composite gels of BSA with gelatin following thermal treatment. Food Hydrocolloids, 2018, 74, 97-103.	5.6	4
232	An in-vitro upper gut simulator for assessing continuous gas production: A proof-of-concept using milk digestion. Journal of Functional Foods, 2018, 47, 200-210.	1.6	4
233	Structural-rheological characteristics of Chaplin E peptide at the air/water interface; a comparison with β-lactoglobulin and β-casein. International Journal of Biological Macromolecules, 2020, 144, 742-750.	3.6	4
234	Phase volume quantification of agarose-ghee gels using 3D confocal laser scanning microscopy and blending law analysis: A comparison. LWT - Food Science and Technology, 2020, 129, 109567.	2.5	4

#	Article	IF	CITATIONS
235	3D Confocal Laser Scanning Microscopy for Quantification of the Phase Behaviour in Agarose-MCC co-gels in Comparison to the Rheological Blending-law Analysis. Food Biophysics, 2021, 16, 153-160.	1.4	4
236	Textural properties of a model aqueous phase in low fat products. Part 2: Alginate/caseinate blends and three-component systems. International Journal of Food Science and Technology, 2000, 35, 227-234.	1.3	3
237	Novel uses of biopolymers in the development of low fat spreads and soft cheeses. Developments in Food Science, 2000, 41, 397-418.	0.0	3
238	Phase Model Interpretation of the Structural Properties of Two Molecular Soy Protein Fractions. Journal of Agricultural and Food Chemistry, 2008, 56, 2490-2497.	2.4	3
239	Thermomechanical effects of co-solute on the structure formation of bovine serum albumin. Food Chemistry, 2014, 157, 296-301.	4.2	3
240	Influence of chiral ligands on the gel formation of a Mg(ii) coordination polymer. CrystEngComm, 2015, 17, 8011-8014.	1.3	3
241	Structure and phase behaviour of microcrystalline cellulose in mixture with condensed systems of potato starch. International Journal of Food Science and Technology, 2017, 52, 800-807.	1.3	3
242	Glass transition effects on the molecular transport of caffeine from condensed k-carrageenan/polydextrose systems. Food Hydrocolloids, 2022, 126, 107401.	5.6	3
243	Enzymatic catalysis in a whey protein matrix at temperatures in the vicinity of the glass transition. Food Research International, 2014, 62, 671-676.	2.9	2
244	Shelf-life studies of flavour characteristics in model UHT liquid systems enriched with wholegrain oat. Heliyon, 2018, 4, e00566.	1.4	2
245	Rate of fatty acid transport in glassy biopolymers: A free volume based predictive approach. Food Hydrocolloids, 2018, 78, 128-131.	5.6	2
246	Modeling counterion partition in composite gels of BSA with gelatin following high pressure treatment. Food Chemistry, 2019, 285, 104-110.	4.2	2
247	Quantifying Phase Behaviour in Model Food Composites Using 3D Confocal Laser Scanning Microscopy. Food Biophysics, 2022, 17, 165-170.	1.4	2