Vikram G Shakkottai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8494218/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic evaluation of dementia with Lewy bodies implicates distinct disease subgroups. Brain, 2022, 145, 1757-1762.	7.6	17
2	Preliminary Study of Vibrotactile Feedback during Home-Based Balance and Coordination Training in Individuals with Cerebellar Ataxia. Sensors, 2022, 22, 3512.	3.8	2
3	Discovery of Novel Activators of Large-Conductance Calcium-Activated Potassium Channels for the Treatment of Cerebellar Ataxia. Molecular Pharmacology, 2022, 102, 17-28.	2.3	9
4	A Chlorzoxazoneâ€Baclofen Combination Improves Cerebellar Impairment in Spinocerebellar Ataxia Type 1. Movement Disorders, 2021, 36, 622-631.	3.9	25
5	Antisense Oligonucleotide Therapy Targeted Against ATXN3 Improves Potassium Channel–Mediated Purkinje Neuron Dysfunction in Spinocerebellar Ataxia Type 3. Cerebellum, 2021, 20, 41-53.	2.5	17
6	Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nature Genetics, 2021, 53, 294-303.	21.4	198
7	THAP1 modulates oligodendrocyte maturation by regulating ECM degradation in lysosomes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
8	Alanyl-tRNA Synthetase 2 (AARS2)-Related Ataxia Without Leukoencephalopathy. Cerebellum, 2020, 19, 154-160.	2.5	15
9	Nicotinamide Pathway-Dependent Sirt1 Activation Restores Calcium Homeostasis to Achieve Neuroprotection in Spinocerebellar Ataxia Type 7. Neuron, 2020, 105, 630-644.e9.	8.1	63
10	Toward allele-specific targeting therapy and pharmacodynamic marker for spinocerebellar ataxia type 3. Science Translational Medicine, 2020, 12, .	12.4	32
11	Altered Capicua expression drives regional Purkinje neuron vulnerability through ion channel gene dysregulation in spinocerebellar ataxia type 1. Human Molecular Genetics, 2020, 29, 3249-3265.	2.9	20
12	Dysphagia in spinocerebellar ataxias type 1, 2, 3 and 6. Journal of the Neurological Sciences, 2020, 415, 116878.	0.6	3
13	In Vivo Molecular Signatures of Cerebellar Pathology in Spinocerebellar Ataxia Type 3. Movement Disorders, 2020, 35, 1774-1786.	3.9	23
14	The impact of ethnicity on the clinical presentations of spinocerebellar ataxia type 3. Parkinsonism and Related Disorders, 2020, 72, 37-43.	2.2	16
15	Multiple system atrophy pathology is associated with primary Sjögren's syndrome. JCI Insight, 2020, 5, .	5.0	3
16	The inherited ataxias. , 2020, , 75-97.		0
17	Polyglutamine Repeats in Neurodegenerative Diseases. Annual Review of Pathology: Mechanisms of Disease, 2019, 14, 1-27.	22.4	189
18	Antisense oligonucleotide therapy rescues aggresome formation in a novel spinocerebellar ataxia type 3 human embryonic stem cell line. Stem Cell Research, 2019, 39, 101504.	0.7	35

VIKRAM G SHAKKOTTAI

#	Article	IF	CITATIONS
19	Moving Towards Therapy in SCA1: Insights from Molecular Mechanisms, Identification of Novel Targets, and Planning for Human Trials. Neurotherapeutics, 2019, 16, 999-1008.	4.4	9
20	Synthetic high-density lipoprotein nanoparticles for the treatment of Niemann–Pick diseases. BMC Medicine, 2019, 17, 200.	5.5	19
21	Tremor in the Degenerative Cerebellum: Towards the Understanding of Brain Circuitry for Tremor. Cerebellum, 2019, 18, 519-526.	2.5	16
22	COQ4 Mutation Leads to Childhood-Onset Ataxia Improved by CoQ10 Administration. Cerebellum, 2019, 18, 665-669.	2.5	24
23	Expanding the genetic basis of ataxia. Nature Genetics, 2019, 51, 580-581.	21.4	5
24	Generation of Spinocerebellar Ataxia Type 2 induced pluripotent stem cell lines, CHOPi002-A and CHOPi003-A, from patients with abnormal CAG repeats in the coding region of the ATXN2 gene. Stem Cell Research, 2019, 34, 101361.	0.7	13
25	Ion channel dysfunction in cerebellar ataxia. Neuroscience Letters, 2019, 688, 41-48.	2.1	52
26	Targeted exome analysis identifies the genetic basis of disease in over 50% of patients with a wide range of ataxia-related phenotypes. Genetics in Medicine, 2019, 21, 195-206.	2.4	65
27	Targeting potassium channels to treat cerebellar ataxia. Annals of Clinical and Translational Neurology, 2018, 5, 297-314.	3.7	50
28	Mutations in <i>VPS13D</i> lead to a new recessive ataxia with spasticity and mitochondrial defects. Annals of Neurology, 2018, 83, 1075-1088.	5.3	122
29	Protein kinase C activity is a protective modifier of Purkinje neuron degeneration in cerebellar ataxia. Human Molecular Genetics, 2018, 27, 1396-1410.	2.9	30
30	Autosomal-dominant cerebellar ataxias. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 147, 173-185.	1.8	29
31	<i>C9orf72</i> repeat expansions as genetic modifiers for depression in spinocerebellar ataxias. Movement Disorders, 2018, 33, 497-498.	3.9	4
32	MTSS1/Src family kinase dysregulation underlies multiple inherited ataxias. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12407-E12416.	7.1	20
33	Dendritic potassium channel dysfunction may contribute to dendrite degeneration in spinocerebellar ataxia type 1. PLoS ONE, 2018, 13, e0198040.	2.5	21
34	Coordinate regulation of mutant NPC1 degradation by selective ER autophagy and MARCH6-dependent ERAD. Nature Communications, 2018, 9, 3671.	12.8	82
35	Oligonucleotide therapy mitigates disease in spinocerebellar ataxia type 3 mice. Annals of Neurology, 2018, 84, 64-77.	5.3	127
36	Dystonia and ataxia progression in spinocerebellar ataxias. Parkinsonism and Related Disorders, 2017, 45, 75-80.	2.2	39

VIKRAM G SHAKKOTTAI

#	Article	IF	CITATIONS
37	Polyglutamine spinocerebellar ataxias — from genes to potential treatments. Nature Reviews Neuroscience, 2017, 18, 613-626.	10.2	270
38	Potassium channel dysfunction underlies Purkinje neuron spiking abnormalities in spinocerebellar ataxia type 2. Human Molecular Genetics, 2017, 26, 3935-3945.	2.9	54
39	The Initial Symptom and Motor Progression in Spinocerebellar Ataxias. Cerebellum, 2017, 16, 615-622.	2.5	42
40	Current Opinions and Areas of Consensus on the Role of the Cerebellum in Dystonia. Cerebellum, 2017, 16, 577-594.	2.5	184
41	Postural Tremor and Ataxia Progression in Spinocerebellar Ataxias. Tremor and Other Hyperkinetic Movements, 2017, 7, 492.	2.0	13
42	Heat Shock Protein Beta-1 Modifies Anterior to Posterior Purkinje Cell Vulnerability in a Mouse Model of Niemann-Pick Type C Disease. PLoS Genetics, 2016, 12, e1006042.	3.5	18
43	Single amino acid deletion in transmembrane segment D4S6 of sodium channel Scn8a (Nav1.6) in a mouse mutant with a chronic movement disorder. Neurobiology of Disease, 2016, 89, 36-45.	4.4	23
44	Depression and clinical progression in spinocerebellar ataxias. Parkinsonism and Related Disorders, 2016, 22, 87-92.	2.2	85
45	Precision medicine in spinocerebellar ataxias: treatment based on common mechanisms of disease. Annals of Translational Medicine, 2016, 4, 25.	1.7	22
46	Coenzyme Q10 and spinocerebellar ataxias. Movement Disorders, 2015, 30, 214-220.	3.9	36
47	Neuronal Atrophy Early in Degenerative Ataxia Is a Compensatory Mechanism to Regulate Membrane Excitability. Journal of Neuroscience, 2015, 35, 11292-11307.	3.6	93
48	Vascular risk factors and clinical progression in spinocerebellar ataxias. Tremor and Other Hyperkinetic Movements, 2015, 5, 287.	2.0	5
49	The Role for Alterations in Neuronal Activity in the Pathogenesis of Polyglutamine Repeat Disorders. Neurotherapeutics, 2014, 11, 751-763.	4.4	22
50	Translating cerebellar Purkinje neuron physiology to progress in dominantly inherited ataxia. Future Neurology, 2014, 9, 187-196.	0.5	27
51	Alterations in cerebellar physiology are associated with a stiff-legged gait in Atcayji-hes mice. Neurobiology of Disease, 2014, 67, 140-148.	4.4	20
52	Physiologic Changes Associated with Cerebellar Dystonia. Cerebellum, 2014, 13, 637-644.	2.5	21
53	Clinical Neurogenetics. Neurologic Clinics, 2013, 31, 987-1007.	1.8	78
54	Clinical characteristics of patients with spinocerebellar ataxias 1, 2, 3 and 6 in the US; a prospective observational study. Orphanet Journal of Rare Diseases, 2013, 8, 177.	2.7	117

VIKRAM G SHAKKOTTAI

#	Article	IF	CITATIONS
55	Toward RNAi Therapy for the Polyglutamine Disease Machado–Joseph Disease. Molecular Therapy, 2013, 21, 1898-1908.	8.2	102
56	Mutations in <i>KCND3</i> cause spinocerebellar ataxia type 22. Annals of Neurology, 2012, 72, 859-869.	5.3	138
57	Temporal and cell-specific deletion establishes that neuronal Npc1 deficiency is sufficient to mediate neurodegeneration. Human Molecular Genetics, 2011, 20, 4440-4451.	2.9	53
58	Early Changes in Cerebellar Physiology Accompany Motor Dysfunction in the Polyglutamine Disease Spinocerebellar Ataxia Type 3. Journal of Neuroscience, 2011, 31, 13002-13014.	3.6	190
59	Conditional Niemann-Pick C mice demonstrate cell autonomous Purkinje cell neurodegeneration. Human Molecular Genetics, 2010, 19, 837-847.	2.9	123
60	FGF14 regulates the intrinsic excitability of cerebellar Purkinje neurons. Neurobiology of Disease, 2009, 33, 81-88.	4.4	112
61	Physiologic Alterations in Ataxia. Archives of Neurology, 2009, 66, 1196-201.	4.5	25
62	Modulators of Small- and Intermediate-Conductance Calcium-Activated Potassium Channels and their Therapeutic Indications. Current Medicinal Chemistry, 2007, 14, 1437-1457.	2.4	189
63	SKCa Channels Mediate the Medium But Not the Slow Calcium-Activated Afterhyperpolarization in Cortical Neurons. Journal of Neuroscience, 2004, 24, 3537-3542.	3.6	113
64	SK3-1C, a Dominant-negative Suppressor of SKCa and IKCa Channels. Journal of Biological Chemistry, 2004, 279, 6893-6904.	3.4	34
65	Enhanced neuronal excitability in the absence of neurodegeneration induces cerebellar ataxia. Journal of Clinical Investigation, 2004, 113, 582-590.	8.2	94
66	Enhanced neuronal excitability in the absence of neurodegeneration induces cerebellar ataxia. Journal of Clinical Investigation, 2004, 113, 582-590.	8.2	60
67	Design and Characterization of a Highly Selective Peptide Inhibitor of the Small Conductance Calcium-activated K+Channel, SkCa2. Journal of Biological Chemistry, 2001, 276, 43145-43151.	3.4	106
68	Vulnerability of Human Cerebellar Neurons to Degeneration in Ataxia-Causing Channelopathies. Frontiers in Systems Neuroscience, 0, 16, .	2.5	1