
Henn Ojaveer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8494198/publications.pdf Version: 2024-02-01

HENN OLAVEED

#	Article	IF	CITATIONS
1	Dispersal and emerging ecological impacts of Ponto-Caspian species in the Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59, 1209-1228.	1.4	493
2	A Census of Marine Biodiversity Knowledge, Resources, and Future Challenges. PLoS ONE, 2010, 5, e12110.	2.5	468
3	The Baltic Sea as a time machine for the future coastal ocean. Science Advances, 2018, 4, eaar8195.	10.3	339
4	Status of Biodiversity in the Baltic Sea. PLoS ONE, 2010, 5, e12467.	2.5	261
5	The Baltic—a sea of invaders. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59, 1175-1188.	1.4	218
6	Non-natives: 141 scientists object. Nature, 2011, 475, 36-36.	27.8	197
7	International arrivals: widespread bioinvasions in European Seas. Ethology Ecology and Evolution, 2014, 26, 152-171.	1.4	176
8	â€~Double trouble': the expansion of the Suez Canal and marine bioinvasions in the Mediterranean Sea. Biological Invasions, 2015, 17, 973-976.	2.4	170
9	Using indicators for evaluating, comparing, and communicating the ecological status of exploited marine ecosystems. 2. Setting the scene. ICES Journal of Marine Science, 2010, 67, 692-716.	2.5	156
10	Classification of Non-Indigenous Species Based on Their Impacts: Considerations for Application in Marine Management. PLoS Biology, 2015, 13, e1002130.	5.6	151
11	A risk-based approach to cumulative effect assessments for marine management. Science of the Total Environment, 2018, 612, 1132-1140.	8.0	150
12	Trophic Status of the South-Eastern Baltic Sea: A Comparison of Coastal and Open Areas. Estuarine, Coastal and Shelf Science, 2001, 53, 849-864.	2.1	145
13	Ten recommendations for advancing the assessment and management of non-indigenous species in marine ecosystems. Marine Policy, 2014, 44, 160-165.	3.2	122
14	Ecological indicators to capture the effects of fishing on biodiversity and conservation status of marine ecosystems. Ecological Indicators, 2016, 60, 947-962.	6.3	120
15	Trends in the detection of aquatic nonâ€indigenous species across global marine, estuarine and freshwater ecosystems: A 50â€year perspective. Diversity and Distributions, 2020, 26, 1780-1797.	4.1	118
16	Dose of truth—Monitoring marine non-indigenous species to serve legislative requirements. Marine Policy, 2015, 54, 26-35.	3.2	113
17	The enlargement of the Suez Canal—Erythraean introductions and management challenges. Management of Biological Invasions, 2017, 8, 141-152.	1.2	104
18	Historical baselines in marine bioinvasions: Implications for policy and management. PLoS ONE, 2018, 13, e0202383.	2.5	103

#	Article	IF	CITATIONS
19	Can simple be useful and reliable? Using ecological indicators to represent and compare the states of marine ecosystems. ICES Journal of Marine Science, 2010, 67, 717-731.	2.5	100
20	Diverse effects of invasive ecosystem engineers on marine biodiversity and ecosystem functions: A global review and metaâ€analysis. Global Change Biology, 2018, 24, 906-924.	9.5	95
21	Ecological consequences of biological invasions: three invertebrate case studies in the north-eastern Baltic Sea. Helgoland Marine Research, 2006, 60, 106-112.	1.3	73
22	Shipping and natural environmental conditions determine the distribution of the invasive non-indigenous round goby Neogobius melanostomus in a regional sea. Estuarine, Coastal and Shelf Science, 2016, 169, 15-24.	2.1	67
23	Gulf of Riga and P¤nu Bay. Ecological Studies, 2008, , 217-243.	1.2	64
24	Prioritizing marine invasive alien species in the European Union through horizon scanning. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 794-845.	2.0	62
25	Dynamics of biological invasions and pathways over time: a case study of a temperate coastal sea. Biological Invasions, 2017, 19, 799-813.	2.4	61
26	Ranking the ecological relative status of exploited marine ecosystems. ICES Journal of Marine Science, 2010, 67, 769-786.	2.5	60
27	The Future of the Oceans Past: Towards a Global Marine Historical Research Initiative. PLoS ONE, 2014, 9, e101466.	2.5	59
28	Operationalizing risk-based cumulative effect assessments in the marine environment. Science of the Total Environment, 2020, 724, 138118.	8.0	59
29	Non-indigenous species refined national baseline inventories: A synthesis in the context of the European Union's Marine Strategy Framework Directive. Marine Pollution Bulletin, 2019, 145, 429-435.	5.0	58
30	Highlights of zooplankton dynamics in Estonian waters (Baltic Sea). ICES Journal of Marine Science, 1998, 55, 748-755.	2.5	57
31	Population dynamics and ecological impact of the non-indigenous Cercopagis pengoi in the Gulf of Riga (Baltic Sea). Hydrobiologia, 2004, 522, 261-269.	2.0	57
32	Ecosystem impacts of the widespread non-indigenous species in the Baltic Sea: literature survey evidences major limitations in knowledge. Hydrobiologia, 2015, 750, 171-185.	2.0	55
33	Chinese mitten crab Eriocheir sinensis in the Baltic Sea—a supply-side invader?. Biological Invasions, 2007, 9, 409-418.	2.4	51
34	Making non-indigenous species information systems practical for management and useful for research: An aquatic perspective. Biological Conservation, 2014, 173, 98-107.	4.1	49
35	Assessing biological invasions in European Seas: Biological traits of the most widespread non-indigenous species. Estuarine, Coastal and Shelf Science, 2018, 201, 17-28.	2.1	45
36	The round goby Neogobius melanostomus is colonising the NE Baltic Sea. Aquatic Invasions, 2006, 1, 44-45.	1.6	45

#	Article	IF	CITATIONS
37	Human activities and resultant pressures on key European marine habitats: An analysis of mapped resources. Marine Policy, 2018, 98, 1-10.	3.2	42
38	INVASIVESNET towards an International Association for Open Knowledge on Invasive Alien Species. Management of Biological Invasions, 2016, 7, 131-139.	1.2	41
39	The Enlargement of the <scp>S</scp> uez <scp>C</scp> anal and Introduction of Nonâ€Indigenous Species to the Mediterranean Sea. Limnology and Oceanography Bulletin, 2015, 24, 43-45.	0.4	38
40	A successful non-native predator, round goby, in the Baltic Sea: generalist feeding strategy, diverse diet and high prey consumption. Hydrobiologia, 2016, 777, 271-281.	2.0	37
41	Something old, something new: Historical perspectives provide lessons for blue growth agendas. Fish and Fisheries, 2020, 21, 774-796.	5.3	36
42	Methodological Challenges in Assessing the Environmental Status of a Marine Ecosystem: Case Study of the Baltic Sea. PLoS ONE, 2011, 6, e19231.	2.5	35
43	Historical ecology provides new insights for ecosystem management: eastern Baltic cod case study. Marine Policy, 2011, 35, 266-270.	3.2	34
44	Importance of fish biodiversity for the management of fisheries and ecosystems. Fisheries Research, 2008, 90, 6-8.	1.7	33
45	Could Seals Prevent Cod Recovery in the Baltic Sea?. PLoS ONE, 2011, 6, e18998.	2.5	33
46	Synthesis of Knowledge on Marine Biodiversity in European Seas: From Census to Sustainable Management. PLoS ONE, 2013, 8, e58909.	2.5	32
47	Assessing exemptions under the ballast water management convention: preclude the Trojan horse. Marine Pollution Bulletin, 2016, 103, 84-92.	5.0	32
48	Twenty five years of invasion: management of the round goby Neogobius melanostomus in the Baltic Sea. Management of Biological Invasions, 2015, 6, 329-339.	1.2	32
49	Habitat mapping in the European Seas - is it fit for purpose in the marine restoration agenda?. Marine Policy, 2019, 106, 103521.	3.2	31
50	Ecological Impact of Ponto-Caspian Invaders in the Baltic Sea, European Inland Waters and the Great Lakes: An Inter-Ecosystem Comparison. , 2002, , 412-425.		30
51	Increasing understanding of alien species through citizen science (Alien-CSI). Research Ideas and Outcomes, 0, 4, .	1.0	30
52	Distribution and Population Characteristics of Cercopagis pengoi in Lake Ontario. Journal of Great Lakes Research, 2001, 27, 10-18.	1.9	29
53	Feeding ecology of pelagic fish species in the Gulf of Riga (Baltic Sea): the importance of changes in the zooplankton community. Journal of Fish Biology, 2010, 77, 2268-2284.	1.6	28
54	Disentangling temporal food web dynamics facilitates understanding of ecosystem functioning. Journal of Animal Ecology, 2021, 90, 1205-1216.	2.8	28

#	Article	IF	CITATIONS
55	Habitat Features and Their Influence on the Restoration Potential of Marine Habitats in Europe. Frontiers in Marine Science, 2020, 7, .	2.5	27
56	Multi-decadal scale variability in the eastern Baltic cod fishery 1550–1860—Evidence and causes. Fisheries Research, 2007, 87, 106-119.	1.7	26
57	SHORT COMMUNICATION. Rapid establishment of the alien crab <i>Rhithropanopeus harrisii</i> (Gould) in the Gulf of Riga. Estonian Journal of Ecology, 2012, 61, 293.	0.5	25
58	Outlier Loci Detect Intraspecific Biodiversity amongst Spring and Autumn Spawning Herring across Local Scales. PLoS ONE, 2016, 11, e0148499.	2.5	25
59	Changes in the ecosystem of the Gulf of Riga from the 1970s to the 1990s. ICES Journal of Marine Science, 1999, 56, 33-40.	2.5	24
60	Identifying the top issues of marine invasive alien species in Europe. Management of Biological Invasions, 2014, 5, 81-84.	1.2	24
61	Four Regional Marine Biodiversity Studies: Approaches and Contributions to Ecosystem-Based Management. PLoS ONE, 2011, 6, e18997.	2.5	22
62	Evaluating changes in marine communities that provide ecosystem services through comparative assessments of community indicators. Ecosystem Services, 2015, 16, 413-429.	5.4	22
63	Spatial and temporal variability of zooplankton in a temperate semi-enclosed sea: implications for monitoring design and long-term studies. Journal of Plankton Research, 2016, 38, 652-661.	1.8	22
64	The Baltic Health Index (BHI): Assessing the social–ecological status of the Baltic Sea. People and Nature, 2021, 3, 359-375.	3.7	21
65	Temperature-driven changes in early life-history stages influence the Gulf of Riga spring spawning herring (Clupea harengus m.) recruitment abundance. Hydrobiologia, 2016, 767, 125-135.	2.0	20
66	Linking atmospheric, terrestrial and aquatic environments: Regime shifts in the Estonian climate over the past 50 years. PLoS ONE, 2018, 13, e0209568.	2.5	18
67	The response of thick-lipped grey mullet, Chelon labrosus (Risso), to diets of varied protein-to-energy ratio. Aquaculture Research, 1996, 27, 603-612.	1.8	17
68	Historical development of fisheries in northern Europe—Reconstructing chronology of interactions between nature and man. Fisheries Research, 2007, 87, 102-105.	1.7	17
69	Female ovarian abnormalities and reproductive failure of autumn-spawning herring (Clupea harengus) Tj ETQq1 I	0,784314	1 rgBT /Over
70	Temporal development of coastal ecosystems in the Baltic Sea over the past two decades. ICES Journal of Marine Science, 2015, 72, 2539-2548.	2.5	16
71	Taxonomic Status and Reproduction Dynamics of the Non-Indigenous Cercopagis in the Gulf of Riga (Baltic Sea). Hydrobiologia, 2006, 554, 147-154.	2.0	15
72	Gulf of Riga (Baltic Sea) fisheries in the late 17th century. Fisheries Research, 2007, 87, 120-125.	1.7	15

#	Article	IF	CITATIONS
73	Fisheries at the Estonian Baltic Sea coast in the first half of the 19th century: What can be learned from the archives of Karl Ernst Baer?. Fisheries Research, 2007, 87, 126-136.	1.7	14
74	Alien species in a brackish water temperate ecosystem: Annual-scale dynamics in response to environmental variability. Environmental Research, 2011, 111, 933-942.	7.5	14
75	Dual impact of temperature on growth and mortality of marine fish larvae in a shallow estuarine habitat. Estuarine, Coastal and Shelf Science, 2015, 167, 326-335.	2.1	13
76	Swedish Baltic Sea fisheries during 1868–1913: Spatio-temporal dynamics of catch and fishing effort. Fisheries Research, 2007, 87, 137-145.	1.7	12
77	Life history and population dynamics of the marine cladoceran Pleopis polyphemoides (Leuckart) (Cladocera, Crustacea) in a shallow temperate Parnu Bay (Baltic Sea). Journal of Plankton Research, 2010, 32, 1459-1469.	1.8	12
78	Shifts in the Spring Herring (Clupea harengus membras) Larvae and Related Environment in the Eastern Baltic Sea over the Past 50 Years. PLoS ONE, 2014, 9, e91304.	2.5	12
79	The Predatory Water Flea Cercopagis Pengoi in the Baltic Sea: Invasion History, Distribution and Implications to Ecosystem Dynamics. , 2002, , 62-65.		12
80	Exploitation of biological resources of the Baltic Sea by estonia in 1928–1995. Limnologica, 1999, 29, 224-226.	1.5	11
81	Knowledge to decision in dynamic seas: Methods to incorporate non-indigenous species into cumulative impact assessments for maritime spatial planning. Science of the Total Environment, 2019, 658, 1452-1464.	8.0	11
82	Meta-analysis on the ecological impacts of widely spread non-indigenous species in the Baltic Sea. Science of the Total Environment, 2021, 786, 147375.	8.0	11
83	Successful establishment of the Ponto-Caspian alien cladoceran Evadne anonyx G.O. Sars 1897 in low-salinity environment in the Baltic Sea. Journal of Plankton Research, 2008, 30, 777-782.	1.8	10
84	Mislabeled: eco-labeling an invasive alien shellfish fishery. Biological Invasions, 2013, 15, 2363-2365.	2.4	10
85	Feeding patterns of dominating small pelagic fish in the Gulf of Riga, Baltic Sea. Hydrobiologia, 2017, 792, 331-344.	2.0	10
86	Seasonal depth distribution and thermal experience of the non-indigenous round goby Neogobius melanostomus in the Baltic Sea: implications to key trophic relations. Biological Invasions, 2022, 24, 527-541.	2.4	10
87	Interpretation of the otolith structures in viviparous blenny Zoarces viviparus. Journal of Applied Ichthyology, 1997, 13, 137-142.	0.7	9
88	Impact of extreme climate and bioinvasion on temporal coupling of spring herring (Clupea harengus) Tj ETQq0 C	0 rgBT /O	verlock 10 Tf
89	Evidence from the past: exploitation as cause of commercial extinction of autumn-spawning herring in the Culf of Piga Baltic Sea ICES Journal of Marine Science, 2018, 75, 2476-2487	2.5	9

⁹⁰Selecting for three copepodsâ€"feeding of sprat and herring in the Baltic Sea. ICES Journal of Marine
Science, 2018, 75, 2439-2449.2.58

#	Article	IF	CITATIONS
91	Winter–spring climate effects on small-sized copepods in the coastal Baltic Sea. ICES Journal of Marine Science, 2017, 74, 1855-1864.	2.5	7
92	Target species selection criteria for risk assessment based exemptions of ballast water management requirements. Ocean and Coastal Management, 2020, 183, 105021.	4.4	7
93	European biodiversity action plan for fisheries: issues for non-target species. Fisheries Research, 2004, 69, 1-6.	1.7	6
94	Use of food web knowledge in environmental conservation and management of living resources in the Baltic Sea. ICES Journal of Marine Science, 2021, 78, 2645-2663.	2.5	6
95	Multidecadal dynamics of larval gobies Pomatoschistus spp. in response to environmental variability in a shallow temperate bay. Estuarine, Coastal and Shelf Science, 2014, 136, 112-118.	2.1	5
96	Global marine biosecurity and ship lay-ups: intensifying effects of trade disruptions. Biological Invasions, 2022, 24, 3441-3446.	2.4	5
97	The introduction, establishment, dispersal and impact of introduced non-native fishes. Selected papers from the 11th European Congress of Ichthyology, Tallinn, Estonia, 6-10 September 2004. Journal of Applied Ichthyology, 2005, 21, 241-241.	0.7	4
98	Multidisciplinary perspectives on the history of human interactions with life in the ocean. ICES Journal of Marine Science, 2016, 73, 1382-1385.	2.5	4
99	Over one decade of invasion: the non-indigenous cladoceran Evadne anonyx G.O. Sars, 1897 in a low-salinity environment. Aquatic Invasions, 2014, 9, 499-506.	1.6	4
100	Multidecadal dynamics of the Arctic copepod Limnocalanus macrurus in relation to environmental variability in the Baltic Sea. ICES Journal of Marine Science, 2019, 76, 2427-2436.	2.5	3
101	Quantification of the Early Small-Scale Fishery in the North-Eastern Baltic Sea in the Late 17th Century. PLoS ONE, 2013, 8, e68513.	2.5	2
102	Sustainable use of Baltic Sea resources. ICES Journal of Marine Science, 2018, 75, 2434-2438.	2.5	2
103	HMAP Response to the Marine Forum. Environmental History, 2013, 18, 121-126.	0.5	1
104	Genetic analysis reveals the diversity of larval Gobiidae in a temperate estuary. Journal of Fish Biology, 2017, 91, 1048-1061.	1.6	1
105	Marine Bioinvasions. , 2019, , 336-341.		0
106	Taxon-specific prey response to the invasion of a pelagic invertebrate predator, revealed by comparison of pre- and post-invasion time series. Journal of Plankton Research, 0, , .	1.8	0
107	Spawning stock biomass modulation of environment–recruitment relationship in a marginal spring spawning herring (<i>Clupea harengus membras</i>) population. Canadian Journal of Fisheries and Aquatic Sciences, 2021, 78, 1805-1815.	1.4	0