Gregoryalexander Raciti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8494178/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. International Journal of Molecular Sciences, 2019, 20, 2358.	1.8	844
2	Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Frontiers in Physiology, 2019, 10, 1607.	1.3	527
3	Adipose microenvironment promotes triple negative breast cancer cell invasiveness and dissemination by producing CCL5. Oncotarget, 2016, 7, 24495-24509.	0.8	105
4	ER stress is associated with dedifferentiation and an epithelial-to-mesenchymal transition-like phenotype in PC Cl3 thyroid cells. Journal of Cell Science, 2008, 121, 477-486.	1.2	103
5	Methylglyoxal-Glyoxalase 1 Balance: The Root of Vascular Damage. International Journal of Molecular Sciences, 2017, 18, 188.	1.8	80
6	Methylglyoxal impairs endothelial insulin sensitivity both in vitro and in vivo. Diabetologia, 2014, 57, 1485-1494.	2.9	58
7	Glucosamine-induced endoplasmic reticulum stress affects GLUT4 expression via activating transcription factor 6 in rat and human skeletal muscle cells. Diabetologia, 2010, 53, 955-965.	2.9	53
8	The GLP-1 receptor agonists exenatide and liraglutide activate Glucose transport by an AMPK-dependent mechanism. Journal of Translational Medicine, 2016, 14, 229.	1.8	51
9	Understanding type 2 diabetes: from genetics to epigenetics. Acta Diabetologica, 2015, 52, 821-827.	1.2	39
10	Personalized medicine and Type 2 diabetes: lesson from epigenetics. Epigenomics, 2014, 6, 229-238.	1.0	37
11	Raised expression of the antiapoptotic protein ped/pea-15 increases susceptibility to chemically induced skin tumor development. Oncogene, 2005, 24, 7012-7021.	2.6	34
12	GRP78 Mediates Cell Growth and Invasiveness in Endometrial Cancer. Journal of Cellular Physiology, 2014, 229, 1417-1426.	2.0	30
13	Circulating miRNAs as intercellular messengers, potential biomarkers and therapeutic targets for Type 2 diabetes. Epigenomics, 2015, 7, 653-667.	1.0	30
14	PED/PEA-15 Regulates Glucose-Induced Insulin Secretion by Restraining Potassium Channel Expression in Pancreatic Â-Cells. Diabetes, 2007, 56, 622-633.	0.3	29
15	Nutritional Factors, DNA Methylation, and Risk of Type 2 Diabetes and Obesity: Perspectives and Challenges. International Journal of Molecular Sciences, 2019, 20, 2983.	1.8	26
16	The Destiny of Glucose from a MicroRNA Perspective. Frontiers in Endocrinology, 2018, 9, 46.	1.5	25
17	The role of miR-190a in methylglyoxal-induced insulin resistance in endothelial cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 440-449.	1.8	24
18	PREP1 deficiency downregulates hepatic lipogenesis and attenuates steatohepatitis in mice. Diabetologia, 2013, 56, 2713-2722.	2.9	23

GREGORYALEXANDER RACITI

#	Article	IF	CITATIONS
19	<i>ZMAT3</i> hypomethylation contributes to early senescence of preadipocytes from healthy firstâ€degree relatives of type 2 diabetics. Aging Cell, 2022, 21, e13557.	3.0	19
20	DNA Methylation and Type 2 Diabetes: Novel Biomarkers for Risk Assessment?. International Journal of Molecular Sciences, 2021, 22, 11652.	1.8	17
21	Citrus aurantium L. dry extracts promote C/ebp \hat{l}^2 expression and improve adipocyte differentiation in 3T3-L1 cells. PLoS ONE, 2018, 13, e0193704.	1.1	14
22	Altered <i>PTPRD</i> DNA methylation associates with restricted adipogenesis in healthy first-degree relatives of Type 2 diabetes subjects. Epigenomics, 2020, 12, 873-888.	1.0	13
23	Adenoviral Gene Transfer of PLD1-D4 Enhances Insulin Sensitivity in Mice by Disrupting Phospholipase D1 Interaction with PED/PEA-15. PLoS ONE, 2013, 8, e60555.	1.1	12
24	PED/PEA-15 Inhibits Hydrogen Peroxide-Induced Apoptosis in Ins-1E Pancreatic Beta-Cells via PLD-1. PLoS ONE, 2014, 9, e113655.	1.1	12
25	High-fat diet unveils an enhancer element at the Ped/Pea-15 gene responsible for epigenetic memory in skeletal muscle. Metabolism: Clinical and Experimental, 2018, 87, 70-79.	1.5	11
26	Epigenetic Reprogramming of the Inflammatory Response in Obesity and Type 2 Diabetes. Biomolecules, 2022, 12, 982.	1.8	10
27	Targetting PED/PEA-15 for diabetes treatment. Expert Opinion on Therapeutic Targets, 2017, 21, 571-581.	1.5	8
28	Epigenetic Dysregulation of the Homeobox A5 (HOXA5) Gene Associates with Subcutaneous Adipocyte Hypertrophy in Human Obesity. Cells, 2022, 11, 728.	1.8	7
29	The Pervasive Effects of ER Stress on a Typical Endocrine Cell: Dedifferentiation, Mesenchymal Shift and Antioxidant Response in the Thyrocyte. Frontiers in Endocrinology, 2020, 11, 588685.	1.5	5