
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8493949/publications.pdf Version: 2024-02-01

ANDRAS RODI

#	Article	IF	CITATIONS
1	Imaging photoelectron photoion coincidence spectroscopy with velocity focusing electron optics. Review of Scientific Instruments, 2009, 80, 034101.	0.6	191
2	Vacuum ultraviolet beamline at the Swiss Light Source for chemical dynamics studies. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 610, 597-603.	0.7	186
3	Modeling unimolecular reactions in photoelectron photoion coincidence experiments. Journal of Mass Spectrometry, 2010, 45, 1233-1245.	0.7	160
4	Data acquisition schemes for continuous two-particle time-of-flight coincidence experiments. Review of Scientific Instruments, 2007, 78, 084102.	0.6	155
5	Reaction Conditions of Methane-to-Methanol Conversion Affect the Structure of Active Copper Sites. ACS Catalysis, 2014, 4, 16-22.	5.5	151
6	A new double imaging velocity focusing coincidence experiment: <i>i</i> 2PEPICO. Review of Scientific Instruments, 2012, 83, 083105.	0.6	150
7	Understanding the mechanism of catalytic fast pyrolysis by unveiling reactive intermediates in heterogeneous catalysis. Nature Communications, 2017, 8, 15946.	5.8	141
8	Bis(μ-oxo) versus mono(μ-oxo)dicopper cores in a zeolite for converting methane to methanol: an in situ XAS and DFT investigation. Physical Chemistry Chemical Physics, 2015, 17, 7681-7693.	1.3	137
9	CRF-PEPICO: Double velocity map imaging photoelectron photoion coincidence spectroscopy for reaction kinetics studies. Journal of Chemical Physics, 2017, 147, 013944.	1.2	122
10	Elucidating the Thermal Decomposition of Dimethyl Methylphosphonate by Vacuum Ultraviolet (VUV) Photoionization: Pathways to the PO Radical, a Key Species in Flameâ€Retardant Mechanisms. Chemistry - A European Journal, 2015, 21, 1073-1080.	1.7	102
11	Dissociative Photoionization and Thermochemistry of Dihalomethane Compounds Studied by Threshold Photoelectron Photoion Coincidence Spectroscopy. Journal of Physical Chemistry A, 2005, 109, 1802-1809.	1.1	94
12	<i>In situ</i> flame chemistry tracing by imaging photoelectron photoion coincidence spectroscopy. Review of Scientific Instruments, 2014, 85, 025101.	0.6	94
13	Mass-Resolved Isomer-Selective Chemical Analysis with Imaging Photoelectron Photoion Coincidence Spectroscopy. Journal of Physical Chemistry Letters, 2013, 4, 2948-2952.	2.1	93
14	Threshold photoelectron photoion coincidence studies of parallel and sequential dissociation reactions. Physical Chemistry Chemical Physics, 2005, 7, 1507-1513.	1.3	90
15	On the ionization and dissociative photoionization of iodomethane: a definitive experimental enthalpy of formation of CH3I. Physical Chemistry Chemical Physics, 2009, 11, 11013.	1.3	71
16	On the Dissociation of the Naphthalene Radical Cation: New iPEPICO and Tandem Mass Spectrometry Results. Journal of Physical Chemistry A, 2012, 116, 10999-11007.	1.1	69
17	New analytical tools for advanced mechanistic studies in catalysis: photoionization and photoelectron photoion coincidence spectroscopy. Catalysis Science and Technology, 2020, 10, 1975-1990.	2.1	67
18	Photodissociation of Pyrene Cations: Structure and Energetics from C ₁₆ H ₁₀ ⁺ to C ₁₄ ⁺ and Almost Everything in Between. Journal of Physical Chemistry A, 2014, 118, 7824-7831.	1.1	60

#	Article	IF	CITATIONS
19	Electron ionization, photoionization and photoelectron/photoion coincidence spectroscopy in mass-spectrometric investigations of a low-pressure ethylene/oxygen flame. Proceedings of the Combustion Institute, 2015, 35, 779-786.	2.4	58
20	Nanofocusing, shadowing, and electron mean free path in the photoemission from aerosol droplets. Chemical Physics Letters, 2016, 658, 1-6.	1.2	57
21	Photoion Photoelectron Coincidence Spectroscopy of Primary Amines RCH2NH2 (R = H, CH3, C2H5,) Tj ETQq1 of Physical Chemistry A, 2006, 110, 13425-13433.	1 0.78431 1.1	4 rgBT /Over 55
22	Photoionization of Three Isomers of the C ₉ H ₇ Radical. Journal of Physical Chemistry A, 2010, 114, 4698-4703.	1.1	55
23	Photoelectron Photoion Coincidence Spectroscopy Provides Mechanistic Insights in Fuel Synthesis and Conversion. Energy & amp; Fuels, 2021, 35, 16265-16302.	2.5	55
24	Conformational Properties of 1-Fluoro-1-silacyclohexane, C ₅ H ₁₀ SiHF: Gas Electron Diffraction, Low-Temperature NMR, Temperature-Dependent Raman Spectroscopy, and Quantum Chemical Calculations. Organometallics, 2007, 26, 6544-6550.	1.1	54
25	Photoionization of C ₇ H ₆ and C ₇ H ₅ : Observation of the Fulvenallenyl Radical. ChemPhysChem, 2011, 12, 1795-1797.	1.0	52
26	Unexpected Conformational Properties of 1-Trifluoromethyl-1-Silacyclohexane, C5H10SiHCF3: Gas Electron Diffraction, Low-Temperature NMR Spectropic Studies, and Quantum Chemical Calculations. Chemistry - A European Journal, 2007, 13, 1776-1783.	1.7	51
27	Unimolecular reaction energies for polycyclic aromatic hydrocarbon ions. Physical Chemistry Chemical Physics, 2018, 20, 7195-7205.	1.3	51
28	Dissociative Photoionization of Quinoline and Isoquinoline. Journal of Physical Chemistry A, 2015, 119, 1127-1136.	1.1	49
29	Dissociative photoionization mechanism of methanol isotopologues (CH3OH, CD3OH, CH3OD and) Tj ETQq1 1 Chemistry Chemical Physics, 2011, 13, 13009.	0.784314 1.3	rgBT /Over 48
30	lsomer-dependent catalytic pyrolysis mechanism of the lignin model compounds catechol, resorcinol and hydroquinone. Chemical Science, 2021, 12, 3161-3169.	3.7	45
31	Dissociation dynamics of fluorinated ethene cations: from time bombs on a molecular level to double-regime dissociators. Physical Chemistry Chemical Physics, 2012, 14, 3935.	1.3	43
32	On the protonation of water. Chemical Science, 2014, 5, 3057-3063.	3.7	41
33	Evidence of radical chemistry in catalytic methane oxybromination. Nature Catalysis, 2018, 1, 363-370.	16.1	41
34	Radical Thermometers, Thermochemistry, and Photoelectron Spectra: A Photoelectron Photoion Coincidence Spectroscopy Study of the Methyl Peroxy Radical. Journal of Physical Chemistry Letters, 2018, 9, 534-539.	2.1	39
35	A Halomethane Thermochemical Network from iPEPICO Experiments and Quantum Chemical Calculations. Journal of Physical Chemistry A, 2012, 116, 9696-9705.	1.1	37
36	Breaking through the false coincidence barrier in electron–ion coincidence experiments. Journal of Chemical Physics, 2016, 145, 164202.	1.2	36

#	Article	IF	CITATIONS
37	Off the Beaten Path: Almost Clean Formation of Indene from the <i>ortho</i> -Benzyne + Allyl Reaction. Journal of Physical Chemistry Letters, 2020, 11, 2859-2863.	2.1	36
38	Intramolecular CN Bond Activation and Ringâ€Expansion Reactions of Nâ€Heterocyclic Carbenes. Chemistry - A European Journal, 2015, 21, 1434-1438.	1.7	35
39	Are the three hydroxyphenyl radical isomers created equal? – The role of the phenoxy radical –. Physical Chemistry Chemical Physics, 2015, 17, 30076-30083.	1.3	35
40	Photoelectron Spectrum and Energetics of the <i>meta</i> -Xylylene Diradical. Journal of the American Chemical Society, 2017, 139, 14348-14351.	6.6	34
41	Tunneling in H loss from energy selected ethanol ions. Physical Chemistry Chemical Physics, 2012, 14, 16047.	1.3	33
42	Unimolecular Reaction Mechanism of an Imidazolinâ€2â€ylidene: An iPEPICO Study on the Complex Dissociation of an Arduengoâ€Type Carbene. Chemistry - A European Journal, 2013, 19, 7090-7099.	1.7	33
43	Charged particle velocity map image reconstruction with one-dimensional projections of spherical functions. Review of Scientific Instruments, 2013, 84, 033101.	0.6	32
44	Threshold photoelectron spectrum of the benzyl radical. Molecular Physics, 2015, 113, 2217-2227.	0.8	32
45	Elucidation of radical- and oxygenate-driven paths in zeolite-catalysed conversion of methanol and methyl chloride to hydrocarbons. Nature Catalysis, 2022, 5, 605-614.	16.1	32
46	Two-dimensional (2+n) resonance enhanced multiphoton ionization of HCI: Photorupture channels via the FΔ21 Rydberg state and ab initio spectra. Journal of Chemical Physics, 2008, 129, 164313.	1.2	31
47	Dissociative ionisation of adamantane: a combined theoretical and experimental study. Physical Chemistry Chemical Physics, 2018, 20, 5399-5406.	1.3	30
48	Halogenâ€Dependent Surface Confinement Governs Selective Alkane Functionalization to Olefins. Angewandte Chemie - International Edition, 2019, 58, 5877-5881.	7.2	30
49	Nitrogen matters: the difference between PANH and PAH formation. Physical Chemistry Chemical Physics, 2018, 20, 29910-29917.	1.3	29
50	Selective Methane Functionalization via Oxyhalogenation over Supported Noble Metal Nanoparticles. ACS Catalysis, 2019, 9, 1710-1725.	5.5	29
51	Near IR-emitting DNA-probes exploiting stepwise energy transfer processes. Dalton Transactions, 2007, , 4352.	1.6	28
52	Barrierless proton transfer across weak CHâ‹⁻O hydrogen bonds in dimethyl ether dimer. Journal of Chemical Physics, 2015, 142, 114303.	1.2	28
53	Comment on "Relative Energies, Stereoelectronic Interactions, and Conformational Interconversion in Silacycloalkanes― International Journal of Quantum Chemistry, 2006, 106, 1975-1978.	1.0	27
54	Thermochemistry of Halomethanes CF _{<i>n</i>} Br _{4–<i>n</i>} (<i>n</i> = 0–3) Based on iPEPICO Experiments and Quantum Chemical Computations. Journal of Physical Chemistry A, 2011, 115, 13443-13451.	1.1	27

#	Article	lF	CITATIONS
55	Adiabatic approximations to internal rotation. Journal of Chemical Physics, 2006, 124, 224310.	1.2	26
56	Continuous Pyrolysis Microreactors: Hot Sources with Little Cooling? New Insights Utilizing Cation Velocity Map Imaging and Threshold Photoelectron Spectroscopy. Journal of Physical Chemistry A, 2022, 126, 2196-2210.	1.1	26
57	Bonding in a Borylene Complex Investigated by Photoionization and Dissociative Photoionization. Chemistry - A European Journal, 2012, 18, 4533-4540.	1.7	25
58	Vibrational and electronic excitations in fluorinated ethene cations from the ground up. Journal of Chemical Physics, 2013, 138, 124301.	1.2	25
59	A phenomenological relationship between molecular geometry change and conformational energy change. Journal of Molecular Structure, 2010, 978, 14-19.	1.8	24
60	Dissociation of the Anthracene Radical Cation: A Comparative Look at iPEPICO and Collision-Induced Dissociation Mass Spectrometry Results. Journal of Physical Chemistry A, 2014, 118, 9870-9878.	1.1	24
61	On the formation of cyclopentadiene in the C ₃ H ₅ Ë™ + C ₂ H ₂ reaction. Physical Chemistry Chemical Physics, 2015, 17, 20508-20514.	1.3	24
62	Hydrogen migration as a potential driving force in the thermal decomposition of dimethoxymethane: New insights from pyrolysis imaging photoelectron photoion coincidence spectroscopy and computations. Combustion and Flame, 2020, 222, 123-132.	2.8	24
63	Dissociative photoionization of mono-, di- and trimethylamine studied by a combined threshold photoelectron photoion coincidence spectroscopy and computational approach. Physical Chemistry Chemical Physics, 2006, 8, 613-623.	1.3	23
64	lodide-Coordinated Single-Site Pd Catalysts for Alkyne Dialkoxycarbonylation. ACS Catalysis, 2021, 11, 9242-9251.	5.5	23
65	Photoionization and Pyrolysis of a 1,4â€Azaborinine: Retroâ€Hydroboration in the Cation and Identification of Novel Organoboron Ring Systems. Chemistry - A European Journal, 2014, 20, 9683-9692.	1.7	22
66	Imaging breakdown diagrams for bromobutyne isomers with photoelectron–photoion coincidence. Physical Chemistry Chemical Physics, 2014, 16, 505-515.	1.3	22
67	Controlling tunnelling in methane loss from acetone ions by deuteration. Physical Chemistry Chemical Physics, 2015, 17, 28505-28509.	1.3	22
68	Dissociative Ionization Mechanism and Appearance Energies in Adipic Acid Revealed by Imaging Photoelectron Photoion Coincidence, Selective Deuteration, and Calculations. Journal of Physical Chemistry A, 2016, 120, 3397-3405.	1.1	22
69	To Boldly Look Where No One Has Looked Before: Identifying the Primary Photoproducts of Acetylacetone. Journal of Physical Chemistry A, 2019, 123, 5472-5490.	1.1	22
70	Gas-phase aluminium acetylacetonate decomposition: revision of the current mechanism by VUV synchrotron radiation. Physical Chemistry Chemical Physics, 2021, 23, 15059-15075.	1.3	22
71	Dissociation of energy selected Sn(CH3)4+, Sn(CH3)3Cl+, and Sn(CH3)3Br+ ions: evidence for isolated excited state dynamics. Physical Chemistry Chemical Physics, 2011, 13, 17791.	1.3	21
72	The role of H2 on the stability of the single-metal-site Ir1/AC catalyst for heterogeneous methanol carbonylation. Journal of Catalysis, 2020, 381, 193-203.	3.1	21

ANDRAS BODI

#	Article	IF	CITATIONS
73	The Threshold Photoelectron Spectrum of Fulvenone: A Reactive Ketene Derivative in Lignin Valorization. ChemPhysChem, 2020, 21, 2217-2222.	1.0	21
74	Understanding the Complex Dissociation Dynamics of Energy Selected Dichloroethylene lons: Neutral Isomerization Energies and Heats of Formation by Imaging Photoelectronâ^'Photoion Coincidence. Journal of Physical Chemistry A, 2011, 115, 726-734.	1.1	20
75	On the absolute photoionization cross section and dissociative photoionization of cyclopropenylidene. Physical Chemistry Chemical Physics, 2016, 18, 9240-9247.	1.3	20
76	Operando Photoelectron Photoion Coincidence Spectroscopy Unravels Mechanistic Fingerprints of Propane Activation by Catalytic Oxyhalogenation. Journal of Physical Chemistry Letters, 2020, 11, 856-863.	2.1	20
77	Dissociative Photoionization of X(CH ₃) ₃ (X = N, P, As, Sb, Bi): Mechanism, Trends, and Accurate Energetics. Journal of Physical Chemistry A, 2009, 113, 8091-8098.	1.1	19
78	Dynamics of Hydrogen and Methyl Radical Loss from Ionized Dihydro-Polycyclic Aromatic Hydrocarbons: A Tandem Mass Spectrometry and Imaging Photoelectron–Photoion Coincidence (iPEPICO) Study of Dihydronaphthalene and Dihydrophenanthrene. Journal of Physical Chemistry A, 2014, 118, 1807-1816. Dissociation Dynamics of Energy Selected, Propane, and	1.1	19
79	<pre><i>i-</i>C₃H₇X⁺ lons by iPEPICO: Accurate Heats of Formation of <i>i</i>C₃H₇, <i>i</i>C₃H₇Cl, <i>i</i>C₃H₇Br, and <i>i</i>C₃H₇I. Journal of Delta Content of the sub>7I. Journal of the sub>7I. Journal of the sub>7I. Journal of the sub>7I. Journal of the sub>100 sub>1</pre>	1.1	18
80	Physical Chemistry A, 2010, 114, 11285-11291. Heats of Formation of t-Butyl Peroxy Radical and t-Butyl Diazyl Ion: RRKM vs SSACM Rate Theories in Systems with Kinetic and Competitive Shifts. Journal of Physical Chemistry A, 2010, 114, 232-240.	1.1	18
81	Dissociative Photoionization of Diethyl Ether. Journal of Physical Chemistry A, 2015, 119, 10654-10663.	1.1	18
82	Pyrolysis of 3-Methoxypyridine. Detection and Characterization of the Pyrrolyl Radical by Threshold Photoelectron Spectroscopy. Journal of Physical Chemistry A, 2016, 120, 4702-4710.	1.1	18
83	Dissociative Ionization and Thermal Decomposition of Cyclopentanone. Chemistry - A European Journal, 2017, 23, 13131-13140.	1.7	18
84	A pass too far: dissociation of internal energy selected paracyclophane cations, theory and experiment. Physical Chemistry Chemical Physics, 2012, 14, 11920.	1.3	17
85	Photoionisation of the tropyl radical. Beilstein Journal of Organic Chemistry, 2013, 9, 681-688.	1.3	17
86	Manganeseâ^'Chalcocarbonyl Bond Strengths from Threshold Photoelectron Photoion Coincidence Spectroscopy. Organometallics, 2006, 25, 6061-6067.	1.1	16
87	Dissociative Photoionization of Sulfur Chlorides and Oxochlorides: Thermochemistry and Bond Energies Based on Accurate Appearance Energies. Journal of Physical Chemistry A, 2010, 114, 9115-9123.	1.1	16
88	Shining new light on the multifaceted dissociative photoionisation dynamics of CCl ₄ . Physical Chemistry Chemical Physics, 2014, 16, 20492-20499.	1.3	16
89	The ortho-benzyne cation is not planar. Physical Chemistry Chemical Physics, 2018, 20, 3988-3996.	1.3	16
90	Valence Photoionization of Thymine: Ionization Energies, Vibrational Structure, and Fragmentation Pathways from the Slow to the Ultrafast. Chemistry - A European Journal, 2019, 25, 14192-14204.	1.7	16

#	Article	IF	CITATIONS
91	Dissociative Photoionization of the C ₇ H ₈ Isomers Cycloheptatriene and Toluene: Looking at Two Sides of the Same Coin Simultaneously. Journal of Physical Chemistry A, 2019, 123, 3454-3463.	1.1	16
92	One- and Two-Dimensional Translational Energy Distributions in the Iodine-Loss Dissociation of 1,2-C ₂ H ₄ 1 ₂ + and 1,3-C ₃ H ₆ 1 ₂ ⁺ : What Does This Mean?. Journal of Physical Chemistry A, 2012, 116, 2833-2844.	1.1	15
93	Metamorphic <i>meta</i> isomer: carbon dioxide and ketenes are formed <i>via</i> retro-Diels–Alder reactions in the decomposition of <i>meta</i> -benzenediol. Physical Chemistry Chemical Physics, 2019, 21, 19480-19487.	1.3	15
94	The ionization energy of the vinyl radical: a Mexican standoff with a happy ending. Physical Chemistry Chemical Physics, 2019, 21, 22238-22247.	1.3	15
95	Five Birds with One Stone: Photoelectron Photoion Coincidence Unveils Rich Phthalide Pyrolysis Chemistry. Journal of Physical Chemistry A, 2021, 125, 1738-1746.	1.1	15
96	On the Parallel Mechanism of the Dissociation of Energy-Selected P(CH3)3+Ionsâ€. Journal of Physical Chemistry B, 2005, 109, 8393-8399.	1.2	14
97	From Iron Pentacarbonyl to the Iron Ion by Imaging Photoelectron Photoion Coincidence. Journal of Physical Chemistry A, 2013, 117, 4556-4563.	1.1	14
98	The vacuum-ultraviolet photoelectron spectra of CH2F2 and CH2Cl2 revisited. Journal of Molecular Spectroscopy, 2015, 315, 172-183.	0.4	14
99	A photoionization study of 2-propyl and t-butyl radicals. Journal of Analytical and Applied Pyrolysis, 2017, 124, 454-460.	2.6	14
100	Dissociative Photoionization of Dimethyl Carbonate: The More It Is Cut, the Bigger the Fragment Ion. Journal of Physical Chemistry A, 2017, 121, 2748-2759.	1.1	14
101	Dissociative Photoionization and Threshold Photoelectron Spectra of Polycyclic Aromatic Hydrocarbon Fragments: An Imaging Photoelectron Photoion Coincidence (iPEPICO) Study of Four Substituted Benzene Radical Cations. Journal of Physical Chemistry A, 2014, 118, 11226-11234.	1.1	13
102	Coincident velocity map image reconstruction illustrated by the single-photon valence photoionisation of CF ₃ 5. Physical Chemistry Chemical Physics, 2017, 19, 30173-30180.	1.3	13
103	Preparation and regeneration of supported single-Ir-site catalysts by nanoparticle dispersion via CO and nascent I radicals. Journal of Catalysis, 2020, 382, 347-357.	3.1	13
104	Unexpected Conformational Properties of 1-Trifluormethyl-1-Silacyclohexane, C5H10SiHCF3: Gas Electron Diffraction, Low Temperature NMR, and Quantum Chemical Calculations. Chemistry - A European Journal, 2009, 15, 8929-8929.	1.7	12
105	Ultrafast imaging of electronic relaxation in o-xylene: a new competing intersystem crossing channel. Physical Chemistry Chemical Physics, 2013, 15, 18101.	1.3	12
106	Dissociative photoionization of chromium hexacarbonyl: A round-trip ticket to non-statisticality and a detective story in thermochemistry. International Journal of Mass Spectrometry, 2019, 438, 63-71.	0.7	12
107	A guinea pig for conformer selectivity and mechanistic insights into dissociative ionization by photoelectron photoion coincidence: fluorocyclohexane. Physical Chemistry Chemical Physics, 2020, 22, 2351-2360.	1.3	12
108	Two-Dimensional (2+ <i>n</i>) REMPI of CH ₃ Br: Photodissociation Channels via Rydberg States. Journal of Physical Chemistry A, 2010, 114, 9991-9998.	1.1	11

#	Article	IF	CITATIONS
109	A robust link between the thermochemistry of urea and isocyanic acid by dissociative photoionization. Journal of Chemical Thermodynamics, 2013, 58, 292-299.	1.0	10
110	Low-Energy Photoelectron Spectrum and Dissociative Photoionization of the Smallest Amides: Formamide and Acetamide. Journal of Physical Chemistry A, 2019, 123, 272-283.	1.1	9
111	Conformers, electronic states, and diabolical conical intersections in the valence photoelectron spectroscopy of halocyclohexanes. Journal of Chemical Physics, 2020, 153, 054305.	1.2	9
112	A pressurized flow reactor combustion experiment interfaced with synchrotron double imaging photoelectron photoion coincidence spectroscopy. Review of Scientific Instruments, 2020, 91, 045115.	0.6	9
113	Valence Photoionization and Energetics of Vanillin, a Sustainable Feedstock Candidate. Journal of Physical Chemistry A, 2021, 125, 3327-3340.	1.1	9
114	Dissociating C3H5Br+ ions: Almost all roads lead to the allyl cation. International Journal of Mass Spectrometry, 2012, 330-332, 100-108.	0.7	8
115	lodine atom loss kinetics in internal energy selected 1-iodoalkane cations by imaging photoelectron photoion coincidence spectroscopy. International Journal of Mass Spectrometry, 2015, 378, 134-142.	0.7	8
116	Bifurcated dissociative photoionization mechanism of acetic acid anhydride revealed by imaging photoelectron photoion coincidence spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 25161-25168.	1.3	8
117	Furfural: The Unimolecular Dissociative Photoionization Mechanism of the Simplest Furanic Aldehyde. Journal of Physical Chemistry A, 2017, 121, 3401-3410.	1.1	8
118	Photoelectron Photoion Coincidence Spectroscopy to Unveil Reaction Mechanisms by Isomer-selective Detection of Elusive Molecules: From Combustion to Catalysis. Chimia, 2018, 72, 227.	0.3	8
119	Halogenbedingte OberflÄ e henbindung steuert die selektive Alkanfunktionalisierung zu Olefinen. Angewandte Chemie, 2019, 131, 5935-5940.	1.6	8
120	Threshold photoionization shows no sign of nitryl hydride in methane oxidation with nitric oxide. Physical Chemistry Chemical Physics, 2021, 23, 1265-1272.	1.3	8
121	Unimolecular thermal decarbonylation of vanillin stifled by the bimolecular reactivity of methyl-loss intermediate. Journal of Analytical and Applied Pyrolysis, 2022, 161, 105410.	2.6	8
122	On the absolute photoionization cross section and threshold photoelectron spectrum of two reactive ketenes in lignin valorization: fulvenone and 2-carbonyl cyclohexadienone. Physical Chemistry Chemical Physics, 2022, 24, 3655-3663.	1.3	8
123	Hel Photoelectron Spectroscopy of Trialkylaluminum and Dialkylaluminum Hydride Compounds and Their Oligomers. Organometallics, 2002, 21, 2751-2757.	1.1	7
124	Effect of Phosphine Substitution on the Electronic Structure of Cobalt Tricarbonyl Nitrosylâ€. Journal of Physical Chemistry A, 2004, 108, 9957-9961.	1.1	7
125	Photoionization of two substituted methyl radicals: Cyanomethyl and bromomethyl. Chemical Physics Letters, 2010, 500, 232-236.	1.2	7
126	Metal–Carbonyl Bond Energies in Phosphine Analogue Complexes of Co(CO) ₃ NO by Photoelectron Photoion Coincidence Spectroscopy. Organometallics, 2012, 31, 3620-3627.	1.1	6

#	Article	IF	CITATIONS
127	Dissociative Photoionization of 1-Halogenated Silacyclohexanes: Silicon Traps the Halogen. Journal of Physical Chemistry A, 2016, 120, 9188-9197.	1.1	6
128	The Distant Double Bond Determines the Fate of the Carboxylic Group in the Dissociative Photoionization of Oleic Acid. ChemPhysChem, 2017, 18, 3595-3604.	1.0	6
129	Probing different spin states in xylyl radicals and ions. Physical Chemistry Chemical Physics, 2018, 20, 7180-7189.	1.3	6
130	Thermochemistry of the smallest QOOH radical from the roaming fragmentation of energy selected methyl hydroperoxide ions. Physical Chemistry Chemical Physics, 2018, 20, 21085-21094.	1.3	6
131	Dissociative photoionization of 1,3â€dioxolane: We need six channels to fit the elephant. Journal of Mass Spectrometry, 2020, 55, e4522.	0.7	6
132	VUV photoprocessing of oxygen-containing polycyclic aromatic hydrocarbons: Threshold photoelectron spectra. Journal of Molecular Spectroscopy, 2021, 377, 111446.	0.4	6
133	Double-Imaging Photoelectron Photoion Coincidence Spectroscopy Reveals the Unimolecular Thermal Decomposition Mechanism of Dimethyl Carbonate. Journal of Physical Chemistry A, 2021, 125, 2895-2904.	1.1	6
134	Unimolecular isomerisation of 1,5-hexadiyne observed by threshold photoelectron photoion coincidence spectroscopy. Faraday Discussions, 0, 238, 645-664.	1.6	6
135	Internal energy selection in vacuum ultraviolet photoionization of ethanol and ethanol dimers. Journal of Chemical Physics, 2013, 139, 144306.	1.2	5
136	Photoelectron spectroscopy of size-selected cluster ions using synchrotron radiation. Applied Physics A: Materials Science and Processing, 2014, 115, 771-779.	1.1	5
137	Photoelectron–Photoion Coincidence Methods in Mass Spectrometry, (PEPICO). , 2017, , 635-649.		5
138	To roam or not to roam, that is the question for the methyl group in isopropanol cations. International Journal of Mass Spectrometry, 2021, 459, 116469.	0.7	5
139	Dissociative Photoionization of Chloro-, Bromo-, and Iodocyclohexane: Thermochemistry and the Weak C–Br Bond in the Cation. Journal of Physical Chemistry A, 2021, 125, 646-656.	1.1	5
140	Probing the pyrolysis of methyl formate in the dilute gas phase by synchrotron radiation and theory. Journal of Mass Spectrometry, 2022, 57, .	0.7	5
141	Isomer-Dependent Selectivities in the Pyrolysis of Anisaldehyde. Energy & Fuels, 2022, 36, 7200-7205.	2.5	5
142	Energetics and dissociation pathways of dimethyl disulfide and dimethyl diselenide using photoelectron photoion coincidence spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2014, 196, 165-172.	0.8	4
143	Characterisation of the first electronically excited state of protonated acetylene C2H3+ by coincident imaging photoelectron spectroscopy. Molecular Physics, 2021, 119, e1825851.	0.8	4
144	Formation of phenylacetylene and benzocyclobutadiene in the <i>ortho</i> -benzyne + acetylene reaction. Physical Chemistry Chemical Physics, 2022, 24, 1869-1876.	1.3	4

#	Article	IF	CITATIONS
145	Threshold Photoelectron Spectroscopy of Quinoxaline, Quinazoline, and Cinnoline. Journal of Physical Chemistry A, 2022, 126, 2211-2221.	1.1	4
146	Photoionization of Two Potential Biofuel Additives: γ-Valerolactone and Methyl Butyrate. Journal of Physical Chemistry A, 2021, 125, 10711-10724.	1.1	4
147	Trifluoroacetic Acid and Trifluoroacetic Anhydride Radical Cations Dissociate near the Ionization Limit. Journal of Physical Chemistry A, 2019, 123, 6313-6318.	1.1	3
148	The Vagabond Fluorine Atom: Dissociative Photoionization oftrans-1,3,3,3-Tetrafluoropropene. Journal of Physical Chemistry A, 2020, 124, 3738-3746.	1.1	3
149	Dissociative Photoionization of Methyl Vinyl Ketoneâ~'Thermochemical Anchors and a Drifting Methyl Group. Journal of Physical Chemistry A, 2021, 125, 848-856.	1.1	3
150	From Energetics to Intracluster Chemistry: Valence Photoionization of Trifluoromethylsulfur Pentafluoride (CF3SF5) by Double Velocity Map Imaging. Journal of Physical Chemistry A, 2021, 125, 2601-2611.	1.1	3
151	Comparing Femtosecond Multiphoton Dissociative Ionization of Tetrathiafulvene with Imaging Photoelectron Photoion Coincidence Spectroscopy. Journal of Physical Chemistry A, 2013, 117, 2753-2759.	1.1	2
152	A magnetic bottle time-of-flight electron spectrometer suitable for continuous ionization sources. Review of Scientific Instruments, 2019, 90, 063105.	0.6	2
153	Gridless electron trap for a high-duty cycle magnetic bottle time-of-flight spectrometer. Journal of Electron Spectroscopy and Related Phenomena, 2020, 239, 146900.	0.8	2
154	A plethora of isomerization processes and hydrogen scrambling in the fragmentation of the methanol dimer cation: a PEPICO study. Physical Chemistry Chemical Physics, 2022, 24, 1437-1446.	1.3	2
155	Threshold Photoelectron Spectrum of Isolated NTCDA. Zeitschrift Fur Physikalische Chemie, 2011, 225, 715-722.	1.4	1
156	What a little branching can do – Dissociative photoionization of two butanol isomers. International Journal of Mass Spectrometry, 2020, 453, 116341.	0.7	1
157	Titelbild: Halogenbedingte OberflÃ e henbindung steuert die selektive Alkanfunktionalisierung zu Olefinen (Angew. Chem. 18/2019). Angewandte Chemie, 2019, 131, 5829-5829.	1.6	0
158	PTPC2019: Photon Tools for Physical Chemistry 2019. Chimia, 2019, 73, 210.	0.3	0