Mario Mhawej

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8493843/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	SEBU: A novel fully automated Google Earth Engine surface energy balance model for urban areas. Urban Climate, 2022, 44, 101187.	2.4	13
2	Towards a combined Landsat-8 and Sentinel-2 for 10-m land surface temperature products: The Google Earth Engine monthly Ten-ST-GEE system. Environmental Modelling and Software, 2022, 155, 105456.	1.9	11
3	Monthly 10-m evapotranspiration rates retrieved by SEBALI with Sentinel-2 and MODIS LST data. Agricultural Water Management, 2021, 243, 106432.	2.4	23
4	Pervious area change as surrogate to diverse climatic variables trends in the CONUS: A county-scale assessment. Urban Climate, 2021, 35, 100733.	2.4	8
5	Better irrigation management using the satellite-based adjusted single crop coefficient (aKc) for over sixty crop types in California, USA. Agricultural Water Management, 2021, 256, 107059.	2.4	14
6	Downscaled night air temperatures between 2030 and 2070: The case of cities with a complex- and heterogeneous-topography. Urban Climate, 2021, 40, 100998.	2.4	7
7	Dynamic calibration for better SEBALI ET estimations: Validations and recommendations. Agricultural Water Management, 2020, 230, 105955.	2.4	24
8	Automated evapotranspiration retrieval model with missing soil-related datasets: The proposal of SEBALI. Agricultural Water Management, 2020, 229, 105938.	2.4	21
9	Performance of wheat-based cropping systems and economic risk of low relative productivity assessment in a sub-dry Mediterranean environment. European Journal of Agronomy, 2020, 113, 125968.	1.9	11
10	Open-source Google Earth Engine 30-m evapotranspiration rates retrieval: The SEBALIGEE system. Environmental Modelling and Software, 2020, 133, 104845.	1.9	28
11	On the application of METRIC-GEE to estimate spatial and temporal evaporation rates in a mediterranean lake. Remote Sensing Applications: Society and Environment, 2020, 20, 100431.	0.8	7
12	Drought Assessment using Micro-Wave Timeseries of Precipitation and Soil Moisture Over the Mena Region. , 2020, , .		3
13	Evaporation rates in a vital lake: a 34-year assessment for the Karaoun Lake. International Journal of Remote Sensing, 2020, 41, 5321-5337.	1.3	17
14	Sentinel-1 Data for Winter Wheat Phenology Monitoring and Mapping. Remote Sensing, 2019, 11, 2228.	1.8	65
15	Vulnerability assessment of the South-Lebanese coast: A GIS-based approach. Ocean and Coastal Management, 2018, 158, 56-63.	2.0	33
16	Global trends analysis of the main vegetation types throughout the past four decades. Applied Geography, 2018, 97, 184-195.	1.7	25
17	A Novel Approach for Mapping Wheat Areas Using High Resolution Sentinel-2 Images. Sensors, 2018, 18, 2089.	2.1	42
18	Establishing the Wildland-Urban interface building risk index (WUIBRI): The case study of Beit-Meri. Urban Forestry and Urban Greening, 2017, 24, 175-183.	2.3	7

Mario Mhawej

#	Article	IF	CITATIONS
19	A novel method to identify likely causes of wildfire. Climate Risk Management, 2017, 16, 120-132.	1.6	8
20	Towards an establishment of a wildfire risk system in a Mediterranean country. Ecological Informatics, 2016, 32, 167-184.	2.3	28
21	Wildfire Likelihood's Elements: A Literature Review. Challenges, 2015, 6, 282-293.	0.9	25
22	Regional Landsat-Based Drought Monitoring from 1982 to 2014. Climate, 2015, 3, 563-577.	1.2	64
23	Mapping Urban Transitions in the Greater Beirut Area Using Different Space Platforms. Land, 2014, 3, 941-956.	1.2	24
24	Towards an enhanced method to map snow cover areas and derive snow-water equivalent in Lebanon. Journal of Hydrology, 2014, 513, 274-282.	2.3	36
25	Detecting Changes in Vegetation Trends in the Middle East and North Africa (MENA) Region Using SPOT Vegetation. CyberGeo, 0, , .	0.0	16